cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010168 Continued fraction for sqrt(97).

Original entry on oeis.org

9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18
Offset: 0

Views

Author

Keywords

Examples

			9.848857801796104721746211414... = 9 + 1/(1 + 1/(5 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 12 2009
		

Crossrefs

Cf. A010548 (decimal expansion).
Cf. A041174/A041175 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[97],300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)
    PadRight[{9},120,{18,1,5,1,1,1,1,1,1,5,1}] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 15000); x=contfrac(sqrt(97)); for (n=0, 20000, write("b010168.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 12 2009

A041175 Denominators of continued fraction convergents to sqrt(97).

Original entry on oeis.org

1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352, 120205801, 126583153, 753121566, 879704719, 1632826285, 2512531004, 4145357289, 6657888293, 10803245582, 60674116203, 71477361785
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352]; [n le 22 select I[n] else 11208*Self(n-11)+Self(n-22): n in [1..40]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Denominator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

G.f.: -(x^20 -x^19 +6*x^18 -7*x^17 +13*x^16 -20*x^15 +33*x^14 -53*x^13 +86*x^12 -483*x^11 +569*x^10 +483*x^9 +86*x^8 +53*x^7 +33*x^6 +20*x^5 +13*x^4 +7*x^3 +6*x^2 +x +1) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013
a(n) = 11208*a(n-11) + a(n-22). - Vincenzo Librandi, Dec 12 2013

Extensions

More terms from Colin Barker, Nov 14 2013
Showing 1-2 of 2 results.