cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010548 Decimal expansion of square root of 97.

Original entry on oeis.org

9, 8, 4, 8, 8, 5, 7, 8, 0, 1, 7, 9, 6, 1, 0, 4, 7, 2, 1, 7, 4, 6, 2, 1, 1, 4, 1, 4, 9, 1, 7, 6, 2, 4, 4, 8, 1, 6, 9, 6, 1, 3, 6, 2, 8, 7, 4, 4, 2, 7, 6, 4, 1, 7, 1, 7, 2, 3, 1, 5, 4, 5, 2, 9, 8, 3, 6, 4, 4, 0, 5, 8, 3, 7, 0, 7, 6, 7, 8, 6, 3, 0, 0, 9, 3, 2, 0, 0, 7, 8, 4, 1, 1, 5, 4, 2, 5, 7, 6
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 9 followed by {1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18} repeated. - Harry J. Smith, Jun 12 2009

Examples

			9.848857801796104721746211414917624481696136287442764171723154529836440...
		

Crossrefs

Cf. A010168 Continued fraction.

Programs

  • Mathematica
    RealDigits[N[97^(1/2),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(97); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010548.txt", n, " ", d)); } \\ Harry J. Smith, Jun 12 2009

A041174 Numerators of continued fraction convergents to sqrt(97).

Original entry on oeis.org

9, 10, 59, 69, 128, 197, 325, 522, 847, 4757, 5604, 105629, 111233, 661794, 773027, 1434821, 2207848, 3642669, 5850517, 9493186, 53316447, 62809633, 1183889841, 1246699474, 7417387211, 8664086685, 16081473896, 24745560581, 40827034477, 65572595058
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Oct 30 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,11208,0,0,0,0,0,0,0,0,0,0,1},{9,10,59,69,128,197,325,522,847,4757,5604,105629,111233,661794,773027,1434821,2207848,3642669,5850517,9493186,53316447,62809633},30] (* Harvey P. Dale, Aug 02 2021 *)

Formula

G.f.: -(x^21 -9*x^20 +10*x^19 -59*x^18 +69*x^17 -128*x^16 +197*x^15 -325*x^14 +522*x^13 -847*x^12 +4757*x^11 +5604*x^10 +4757*x^9 +847*x^8 +522*x^7 +325*x^6 +197*x^5 +128*x^4 +69*x^3 +59*x^2 +10*x +9) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013

Extensions

More terms from Colin Barker, Nov 14 2013

A041175 Denominators of continued fraction convergents to sqrt(97).

Original entry on oeis.org

1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352, 120205801, 126583153, 753121566, 879704719, 1632826285, 2512531004, 4145357289, 6657888293, 10803245582, 60674116203, 71477361785
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352]; [n le 22 select I[n] else 11208*Self(n-11)+Self(n-22): n in [1..40]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Denominator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

G.f.: -(x^20 -x^19 +6*x^18 -7*x^17 +13*x^16 -20*x^15 +33*x^14 -53*x^13 +86*x^12 -483*x^11 +569*x^10 +483*x^9 +86*x^8 +53*x^7 +33*x^6 +20*x^5 +13*x^4 +7*x^3 +6*x^2 +x +1) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013
a(n) = 11208*a(n-11) + a(n-22). - Vincenzo Librandi, Dec 12 2013

Extensions

More terms from Colin Barker, Nov 14 2013
Showing 1-3 of 3 results.