cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248320 Egyptian fraction representation of sqrt(97) (A010548) using a greedy function.

Original entry on oeis.org

9, 2, 3, 65, 7151, 80022924, 30599691861141025, 941764378394111110366748005603120790, 1207204053149486733914427645845997404101266838687995330054616662472844167
Offset: 0

Views

Author

Robert G. Wilson v, Oct 05 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 97]]

A010168 Continued fraction for sqrt(97).

Original entry on oeis.org

9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18
Offset: 0

Views

Author

Keywords

Examples

			9.848857801796104721746211414... = 9 + 1/(1 + 1/(5 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 12 2009
		

Crossrefs

Cf. A010548 (decimal expansion).
Cf. A041174/A041175 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[97],300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)
    PadRight[{9},120,{18,1,5,1,1,1,1,1,1,5,1}] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 15000); x=contfrac(sqrt(97)); for (n=0, 20000, write("b010168.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 12 2009

A041174 Numerators of continued fraction convergents to sqrt(97).

Original entry on oeis.org

9, 10, 59, 69, 128, 197, 325, 522, 847, 4757, 5604, 105629, 111233, 661794, 773027, 1434821, 2207848, 3642669, 5850517, 9493186, 53316447, 62809633, 1183889841, 1246699474, 7417387211, 8664086685, 16081473896, 24745560581, 40827034477, 65572595058
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Oct 30 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,11208,0,0,0,0,0,0,0,0,0,0,1},{9,10,59,69,128,197,325,522,847,4757,5604,105629,111233,661794,773027,1434821,2207848,3642669,5850517,9493186,53316447,62809633},30] (* Harvey P. Dale, Aug 02 2021 *)

Formula

G.f.: -(x^21 -9*x^20 +10*x^19 -59*x^18 +69*x^17 -128*x^16 +197*x^15 -325*x^14 +522*x^13 -847*x^12 +4757*x^11 +5604*x^10 +4757*x^9 +847*x^8 +522*x^7 +325*x^6 +197*x^5 +128*x^4 +69*x^3 +59*x^2 +10*x +9) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013

Extensions

More terms from Colin Barker, Nov 14 2013

A041175 Denominators of continued fraction convergents to sqrt(97).

Original entry on oeis.org

1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352, 120205801, 126583153, 753121566, 879704719, 1632826285, 2512531004, 4145357289, 6657888293, 10803245582, 60674116203, 71477361785
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 6, 7, 13, 20, 33, 53, 86, 483, 569, 10725, 11294, 67195, 78489, 145684, 224173, 369857, 594030, 963887, 5413465, 6377352]; [n le 22 select I[n] else 11208*Self(n-11)+Self(n-22): n in [1..40]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Denominator[Convergents[Sqrt[97], 30]] (* Vincenzo Librandi, Dec 12 2013 *)

Formula

G.f.: -(x^20 -x^19 +6*x^18 -7*x^17 +13*x^16 -20*x^15 +33*x^14 -53*x^13 +86*x^12 -483*x^11 +569*x^10 +483*x^9 +86*x^8 +53*x^7 +33*x^6 +20*x^5 +13*x^4 +7*x^3 +6*x^2 +x +1) / (x^22 +11208*x^11 -1). - Colin Barker, Nov 14 2013
a(n) = 11208*a(n-11) + a(n-22). - Vincenzo Librandi, Dec 12 2013

Extensions

More terms from Colin Barker, Nov 14 2013

A177159 Decimal expansion of sqrt(4171).

Original entry on oeis.org

6, 4, 5, 8, 3, 2, 7, 9, 5, 6, 9, 8, 7, 0, 0, 9, 4, 9, 7, 6, 5, 0, 3, 7, 0, 8, 1, 1, 5, 1, 5, 0, 3, 8, 7, 2, 7, 4, 2, 5, 0, 0, 4, 2, 3, 1, 4, 6, 2, 6, 2, 4, 3, 2, 5, 8, 5, 5, 2, 7, 2, 9, 9, 6, 1, 0, 6, 8, 9, 8, 2, 7, 6, 4, 7, 2, 0, 3, 9, 1, 5, 5, 0, 7, 6, 3, 8, 2, 6, 6, 1, 4, 2, 0, 9, 7, 0, 2, 7, 8, 4, 5, 4, 2, 1
Offset: 2

Views

Author

Klaus Brockhaus, May 03 2010

Keywords

Comments

Continued fraction expansion of sqrt(4171) is 64 followed by (repeat 1, 1, 2, 1, 1, 128).
sqrt(4171) = sqrt(43)*sqrt(97).

Examples

			sqrt(4171) = 64.58327956987009497650...
		

Crossrefs

Cf. A010497 (decimal expansion of sqrt(43)), A010548 (decimal expansion of sqrt(97)), A177158 (decimal expansion of (103+2*sqrt(4171))/162).
Showing 1-5 of 5 results.