cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041219 Denominators of continued fraction convergents to sqrt(120).

Original entry on oeis.org

1, 1, 21, 22, 461, 483, 10121, 10604, 222201, 232805, 4878301, 5111106, 107100421, 112211527, 2351330961, 2463542488, 51622180721, 54085723209, 1133336644901, 1187422368110, 24881784007101, 26069206375211, 546265911511321, 572335117886532, 11992968269241961
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 20 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[120], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[120],30]] (* Harvey P. Dale, Mar 14 2013 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 22 x^2 + x^4), {x, 0, 30}], x]  (* Vincenzo Librandi, Oct 24 2013 *)

Formula

From Colin Barker, Jul 15 2012: (Start)
a(n) = 22*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/(1-22*x^2+x^4). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(5) + sqrt(6) and beta = sqrt(5) - sqrt(6) be the roots of the equation x^2 - sqrt(20)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 20 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 20*a(2*n) + a(2*n - 1). (End)