cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302332 a(0)=1, a(1)=193; for n>1, a(n) = 194*a(n-1) - a(n-2).

Original entry on oeis.org

1, 193, 37441, 7263361, 1409054593, 273349327681, 53028360515521, 10287228590683393, 1995669318232062721, 387149560508429484481, 75105019069317087926593, 14569986549887006628274561, 2826502285659009968797338241, 548326873431298046940055344193, 106372586943386162096401939435201
Offset: 0

Views

Author

Bruno Berselli, Apr 05 2018

Keywords

Comments

Let G and H be sequences of the form G(i) = 4*G(i-1) - G(i-2) and H(j) = 14*H(j-1) - H(j-2) for arbitrary integers i, j and without regard to initial values of G or H, then a(n) = (G(i) + G(i+8*n+4))/(14*G(i+4*n+2)) = (H(j) + H(j+4*n+2))/(14*H(j+2*n+1)) with the exception of G(i+4*n+2) or H(j+2*n+1) != 0. - Klaus Purath, Aug 31 2020
From Klaus Purath, Aug 20 2025: (Start)
Solutions to the Pell equation (7*a(n))^2 - 3*(4*b(n))^2 = 1. The corresponding b(n) are given by A084232.
For any two consecutive terms (x,y), x^2 - 194*x*y + y^2 + 192 = 0. By analogy to this, for three consecutive terms (x, y, z), y^2 - x*z + 192 = 0. (End)

Crossrefs

Seventh row of the array A188646.
First bisection of A041269, A042127.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329.
Cf. A084232.

Programs

  • Mathematica
    LinearRecurrence[{194, -1}, {1, 193}, 20]
  • PARI
    x='x+O('x^99); Vec((1-x)/(1-194*x+x^2)) \\ Altug Alkan, Apr 06 2018

Formula

G.f.: (1 - x)/(1 - 194*x + x^2).
a(n) = a(-1-n).
a(n) = cosh((2*n + 1)*arccosh(7))/7.
a(n) = ((7 + 4*sqrt(3))^(2*n + 1) + 1/(7 + 4*sqrt(3))^(2*n + 1))/14.
a(n) = (a(n-1)^2 + 192)/a(n-2). - Klaus Purath, Aug 31 2020
a(n) = (1/7)*T(2*n+1, 7), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Jul 08 2022

A041268 Numerators of continued fraction convergents to sqrt(147).

Original entry on oeis.org

12, 97, 2340, 18817, 453948, 3650401, 88063572, 708158977, 17083879020, 137379191137, 3314184466308, 26650854921601, 642934702584732, 5170128475599457, 124726018116971700, 1002978273411373057, 24196204579989925068, 194572614913330773601
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A041269.

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[147], 30]] (* Vincenzo Librandi, Oct 31 2013 *)

Formula

G.f.: -(x^3-12*x^2-97*x-12) / ((x^2-14*x+1)*(x^2+14*x+1)). - Colin Barker, Nov 06 2013

Extensions

More terms from Colin Barker, Nov 06 2013
Showing 1-2 of 2 results.