A041365 Denominators of continued fraction convergents to sqrt(197).
1, 28, 785, 22008, 617009, 17298260, 484968289, 13596410352, 381184458145, 10686761238412, 299610499133681, 8399780736981480, 235493471134615121, 6602216972506204868, 185097568701308351425, 5189334140609140044768
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (28,1).
Crossrefs
Programs
-
Mathematica
a=0;lst={};s=0;Do[a=s-(a-1);AppendTo[lst,a];s+=a*28,{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *) Denominator[Convergents[Sqrt[197], 30]] (* Vincenzo Librandi, Dec 16 2013 *) LinearRecurrence[{28,1},{1,28},20] (* Harvey P. Dale, Mar 07 2021 *)
Formula
a(n) = F(n, 28), the n-th Fibonacci polynomial evaluated at x=28. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 28*a(n-1) + a(n-2), n > 1; a(0)= 1, a(1)=28.
G.f.: 1/(1-28*x-x^2). (End)
Extensions
Additional term from Colin Barker, Nov 16 2013
Comments