A041613 Denominators of continued fraction convergents to sqrt(325).
1, 36, 1297, 46728, 1683505, 60652908, 2185188193, 78727427856, 2836372591009, 102188140704180, 3681609437941489, 132640127906597784, 4778726214075461713, 172166783834623219452, 6202782944260511361985, 223472352777213032250912
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (36,1).
Crossrefs
Programs
-
Maple
with (combinat):seq(fibonacci(3*n,3)/10, n=1..15); # Zerinvary Lajos, Apr 20 2008
-
Mathematica
a=0;lst={};s=0;Do[a=s-(a-1);AppendTo[lst,a];s+=a*36,{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *) Denominator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi Dec 21 2013 *)
Formula
a(n) = F(n, 36), the n-th Fibonacci polynomial evaluated at x=36. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=36.
G.f.: 1/(1 - 36*x - x^2). (End)
a(n) = ((18 + 5*sqrt(13))^(n+1) - (18 - 5*sqrt(13))^(n+1)) / (2*sqrt(13)). - Robert FERREOL, Oct 09 2024
Extensions
More terms from Colin Barker, Nov 20 2013
Comments