cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041759 Denominators of continued fraction convergents to sqrt(399).

Original entry on oeis.org

1, 1, 39, 40, 1559, 1599, 62321, 63920, 2491281, 2555201, 99588919, 102144120, 3981065479, 4083209599, 159143030241, 163226239840, 6361740144161, 6524966384001, 254310462736199, 260835429120200, 10166056769303799, 10426892198423999
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 38 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 27 2014

Crossrefs

Programs

  • Magma
    I:=[1,1,39,40]; [n le 4 select I[n] else 40*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 24 2013
  • Mathematica
    Denominator[Convergents[Sqrt[399], 30]] (* Vincenzo Librandi, Dec 24 2013 *)

Formula

G.f.: -(x^2-x-1) / (x^4-40*x^2+1). - Colin Barker, Nov 24 2013
a(n) = 40*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Dec 24 2013
From Peter Bala, May 27 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(38) + sqrt(42) )/2 and beta = ( sqrt(38) - sqrt(42) )/2 be the roots of the equation x^2 - sqrt(38)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 38 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 38*a(2*n) + a(2*n - 1). (End)

Extensions

More terms from Colin Barker, Nov 24 2013

A322890 a(n) = value of Chebyshev T-polynomial T_n(20).

Original entry on oeis.org

1, 20, 799, 31940, 1276801, 51040100, 2040327199, 81562047860, 3260441587201, 130336101440180, 5210183616019999, 208277008539359780, 8325870157958371201, 332826529309795488260, 13304735302233861159199, 531856585560044650879700
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2018

Keywords

Crossrefs

Column 20 of A322836.
Cf. A041758.

Programs

  • GAP
    a:=[1,20];; for n in [3..20] do a[n]:=40*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 31 2018
  • Maple
    seq(coeff(series((1-20*x)/(1-40*x+x^2),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    CoefficientList[Series[(1 - 20 x)/(1 - 40 x + x^2), {x, 0, 15}], x] (* or *)
    Array[ChebyshevT[#, 20] &, 16, 0] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    {a(n) = polchebyshev(n, 1, 20)}
    
  • PARI
    Vec((1 - 20*x) / (1 - 40*x + x^2) + O(x^20)) \\ Colin Barker, Dec 30 2018
    

Formula

a(0) = 1, a(1) = 20 and a(n) = 40*a(n-1) - a(n-2) for n > 1.
From Colin Barker, Dec 30 2018: (Start)
G.f.: (1 - 20*x) / (1 - 40*x + x^2).
a(n) = ((20+sqrt(399))^(-n) * (1+(20+sqrt(399))^(2*n))) / 2.
(End)
Showing 1-2 of 2 results.