A041832 Numerators of continued fraction convergents to sqrt(437).
20, 21, 209, 439, 4160, 4599, 188120, 192719, 1922591, 4037901, 38263700, 42301601, 1730327740, 1772629341, 17683991809, 37140612959, 351949508440, 389090121399, 15915554364400, 16304644485799, 162657354736591, 341619353958981, 3237231540367420
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 9198, 0, 0, 0, 0, 0, -1).
Programs
-
Mathematica
Numerator[Convergents[Sqrt[437], 30]] (* Vincenzo Librandi, Nov 09 2013 *) LinearRecurrence[{0,0,0,0,0,9198,0,0,0,0,0,-1},{20,21,209,439,4160,4599,188120,192719,1922591,4037901,38263700,42301601},30] (* Harvey P. Dale, Jul 09 2024 *)
Formula
G.f.: -(x^11 -20*x^10 +21*x^9 -209*x^8 +439*x^7 -4160*x^6 -4599*x^5 -4160*x^4 -439*x^3 -209*x^2 -21*x -20) / ((x^4 -21*x^2 +1)*(x^8 +21*x^6 +440*x^4 +21*x^2 +1)). - Colin Barker, Nov 25 2013
a(n) = 9198*a(n-6)-a(n-12). - Wesley Ivan Hurt, May 04 2021
Extensions
More terms from Colin Barker, Nov 25 2013