A041925 Denominators of continued fraction convergents to sqrt(485).
1, 44, 1937, 85272, 3753905, 165257092, 7275065953, 320268159024, 14099074063009, 620679526931420, 27323998259045489, 1202876602924932936, 52953894526956094673, 2331174235788993098548, 102624620269242652430785, 4517814466082465700053088
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (44,1).
Crossrefs
Programs
-
Mathematica
a=0;lst={};s=0;Do[a=s-(a-1);AppendTo[lst,a];s+=a*44,{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *) Denominator[Convergents[Sqrt[485],20]] (* Harvey P. Dale, Oct 20 2011 *) CoefficientList[Series[1/(1 - 44 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 27 2013 *)
Formula
a(n) = F(n, 44), the n-th Fibonacci polynomial evaluated at x=44. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 44*a(n-1) + a(n-2) for n>1; a(0)=1, a(1)=44.
G.f.: 1/(1-44*x-x^2). (End)
Extensions
Additional term from Colin Barker, Nov 27 2013
Comments