A042105 Denominators of continued fraction convergents to sqrt(577).
1, 48, 2305, 110688, 5315329, 255246480, 12257146369, 588598272192, 28264974211585, 1357307360428272, 65179018274768641, 3129950184549323040, 150302787876642274561, 7217663768263378501968, 346598163664518810369025, 16643929519665166276215168
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (48,1).
Crossrefs
Programs
-
Mathematica
a=0;lst={};s=0;Do[a=s-(a-1);AppendTo[lst,a];s+=a*48,{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *) Denominator[Convergents[Sqrt[577], 30]] (* Vincenzo Librandi, Jan 14 2014 *) LinearRecurrence[{48,1},{1,48},20] (* Harvey P. Dale, Aug 21 2019 *)
Formula
a(n) = F(n, 48), the n-th Fibonacci polynomial evaluated at x=48. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 48*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=48.
G.f.: 1/(1 - 48*x - x^2). (End)
Extensions
Additional term from Colin Barker, Dec 01 2013
Comments