A042301 Denominators of continued fraction convergents to sqrt(677).
1, 52, 2705, 140712, 7319729, 380766620, 19807183969, 1030354333008, 53598232500385, 2788138444353028, 145036797338857841, 7544701600064960760, 392469520000716817361, 20415959741637339463532, 1062022376085142368921025, 55245579516169040523356832
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (52,1).
Crossrefs
Programs
-
Mathematica
a = 0; lst = {}; s = 0; Do[a = s - (a - 1); AppendTo[lst, a]; s += a*52, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *) Denominator[Convergents[Sqrt[677], 30]] (* Vincenzo Librandi, Jan 19 2014 *) LinearRecurrence[{52,1},{1,52},20] (* Harvey P. Dale, Mar 24 2023 *)
Formula
a(n) = F(n, 52), the n-th Fibonacci polynomial evaluated at x=52. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 52*a(n-1) + a(n-2) for n > 1, a(0)=1, a(1)=52.
G.f.: 1/(1 - 52*x - x^2). (End)
Extensions
Additional term from Colin Barker, Dec 07 2013
Comments