cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042741 Denominators of continued fraction convergents to sqrt(901).

Original entry on oeis.org

1, 60, 3601, 216120, 12970801, 778464180, 46720821601, 2804027760240, 168288386436001, 10100107213920300, 606174721221654001, 36380583380513160360, 2183441177552011275601, 131042851236501189696420, 7864754515367623393060801, 472016313773293904773344480
Offset: 0

Views

Author

Keywords

Comments

From Michael A. Allen, Jan 22 2024: (Start)
Also called the 60-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 60 kinds of squares available. (End)

Crossrefs

Row n=60 of A073133, A172236 and A352361 and column k=60 of A157103.

Programs

  • Magma
    I:=[1,60]; [n le 2 select I[n] else 60*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 28 2014
  • Mathematica
    Denominator[Convergents[Sqrt[901],30]] (* or *) LinearRecurrence[{60,1},{1,60},30] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = F(n, 60), the n-th Fibonacci polynomial evaluated at x=60. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 60*a(n-1) + a(n-2) for n>1; a(0)=1, a(1)=60.
G.f.: 1/(1 - 60*x - x^2). (End)
E.g.f.: exp(30*x)*cosh(sqrt(901)*x) + 30*exp(30*x)*sinh(sqrt(901)*x)/sqrt(901). - Stefano Spezia, May 14 2023

Extensions

Additional term from Colin Barker, Dec 22 2013