A042741 Denominators of continued fraction convergents to sqrt(901).
1, 60, 3601, 216120, 12970801, 778464180, 46720821601, 2804027760240, 168288386436001, 10100107213920300, 606174721221654001, 36380583380513160360, 2183441177552011275601, 131042851236501189696420, 7864754515367623393060801, 472016313773293904773344480
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (60,1).
Crossrefs
Programs
-
Magma
I:=[1,60]; [n le 2 select I[n] else 60*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 28 2014
-
Mathematica
Denominator[Convergents[Sqrt[901],30]] (* or *) LinearRecurrence[{60,1},{1,60},30] (* Harvey P. Dale, Sep 09 2012 *)
Formula
a(n) = F(n, 60), the n-th Fibonacci polynomial evaluated at x=60. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 60*a(n-1) + a(n-2) for n>1; a(0)=1, a(1)=60.
G.f.: 1/(1 - 60*x - x^2). (End)
E.g.f.: exp(30*x)*cosh(sqrt(901)*x) + 30*exp(30*x)*sinh(sqrt(901)*x)/sqrt(901). - Stefano Spezia, May 14 2023
Extensions
Additional term from Colin Barker, Dec 22 2013
Comments