cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115261 Prime numbers such that the absolute difference of the sum of their digits in odd positions and the sum of their digits in even positions is also a prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 31, 41, 47, 53, 61, 79, 83, 97, 101, 113, 137, 139, 151, 157, 163, 167, 173, 179, 191, 193, 211, 223, 227, 233, 251, 269, 277, 281, 283, 311, 313, 337, 359, 379, 383, 401, 409, 421, 431, 443, 467, 487, 541, 557, 563, 577, 599, 601, 607, 641
Offset: 1

Views

Author

Keywords

Examples

			1237 is in the sequence because it is prime and abs((7+2)-(3+1)) = 5 is prime
		

Crossrefs

Programs

  • Maple
    Df:=proc(N) j:=1; for n from 1 while j<=N do B:= convert(ithprime(n),base,10); ap:=-(sum(B[2*i],i=1..nops(B)/2)-sum(B[2*n+1],i=0..(nops(B)-1)/2)); if (isprime(abs(ap)) = true) then a[j]:=ithprime(n); j:=j+1; fi; od; end:

A115259 Difference between the sum of digits in odd positions and the sum of digits in even positions of prime numbers.

Original entry on oeis.org

2, 3, 5, 7, 0, 2, 6, 8, 1, 7, -2, 4, -3, -1, 3, -2, 4, -5, 1, -6, -4, 2, -5, 1, -2, 2, 4, 8, 10, 3, 6, -1, 5, 7, 6, -3, 3, -2, 2, -3, 3, -6, -7, -5, -1, 1, 2, 3, 7, 9, 2, 8, -1, -2, 4, -1, 5, -4, 2, -5, -3, -4, 10, 3, 5, 9, 1, 7, 6, 8, 1, 7, 4, -1, 5, -2, 4, 1, 5, 13, 12, 3, 2, 4, 10, 3, 9, 6, -1, 1, 5, 6, 3, -4, 4, 8, 14, 4, 6, 2, 8, 7, 2, 8, -1, 5, 4, -1, 5, 7
Offset: 1

Views

Author

Keywords

Comments

Zero corresponds to the prime 11. It is easy to show that there is no other zero: if the difference of odd-even digits of a number is zero, the number is a multiple of 11, i.e., it is not a prime.
Positions are counted from the least to the most significant digit, so for prime 17 the odd digit is 7 and the even digit is 1. - Harvey P. Dale, Dec 15 2022

Examples

			a(37) = 3 because 37th prime = 157, (7+1) - 5 = 3.
		

Crossrefs

Programs

  • Maple
    A115259 := proc(n) A055017(ithprime(n)) ; end proc: # R. J. Mathar, Aug 26 2011
  • Mathematica
    Table[Total[Take[Reverse[IntegerDigits[p]],{1,-1,2}]]-Total[Take[Reverse[IntegerDigits[p]],{2,-1,2}]],{p,Prime[Range[120]]}] (* Harvey P. Dale, Dec 15 2022 *)

Formula

a(n) = A055017(A000040(n)). - R. J. Mathar, Aug 26 2011

A115260 Prime numbers in the sequence of the absolute difference of the sum of digits in odd positions and the sum of digits in even positions of prime numbers.

Original entry on oeis.org

2, 3, 5, 7, 2, 7, 2, 3, 3, 2, 5, 2, 5, 2, 2, 3, 5, 7, 3, 3, 2, 2, 3, 3, 7, 5, 2, 3, 7, 2, 2, 5, 2, 5, 3, 3, 5, 7, 7, 5, 2, 5, 13, 3, 2, 3, 5, 3, 2, 7, 2, 5, 5, 7, 13, 3, 5, 2, 2, 7, 13, 3, 2, 3, 5, 17, 7, 13, 5, 3, 7, 17, 13, 7, 3, 7, 7, 2, 3, 5, 5, 2, 2, 7, 3, 3, 7, 2, 3, 7, 2, 3, 7, 2, 5, 5, 3, 2, 7, 3, 5, 7
Offset: 1

Views

Author

Keywords

Comments

Primes in the sequence A115259.

Examples

			a(37) = 3 because 37th prime = 157, (7+1) - 5 = 3, 3 is prime.
		

Crossrefs

Programs

  • Maple
    select(isprime,[seq(abs(sum(convert(ithprime(a),base,10)[2*i],i=1..nops(convert (ithprime(a),base,10))/2)-sum(convert(ithprime(a),base,10)[2*i+1],i=0..(nops (convert(ithprime(a),base,10))-1)/2)),a=1..N)]);

A185107 a(n) is the first digit of prime(n) minus the sum of the other digits.

Original entry on oeis.org

2, 3, 5, 7, 0, -2, -6, -8, -1, -7, 2, -4, 3, 1, -3, 2, -4, 5, -1, 6, 4, -2, 5, -1, 2, 0, -2, -6, -8, -3, -8, -3, -9, -11, -12, -5, -11, -8, -12, -9, -15, -8, -9, -11, -15, -17, 0, -3, -7, -9, -4, -10, -3, -4, -10, -7, -13
Offset: 1

Views

Author

Dario Piazzalunga, Dec 27 2012

Keywords

Comments

Absolute terms are the same as A042939.

Crossrefs

Programs

  • Mathematica
    Table[With[{id=IntegerDigits[Prime[n]]},id[[1]]-Total[Rest[id]]],{n,60}] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    a(n) = {digs = digits(prime(n)); digs[1] - sum(i=2, #digs, digs[i]);} \\ Michel Marcus, Aug 30 2013

Extensions

a(38) corrected by Michel Marcus, Jun 14 2022
Showing 1-4 of 4 results.