A042977 Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.
1, -2, -1, 9, 8, 2, -64, -79, -36, -6, 625, 974, 622, 192, 24, -7776, -14543, -11758, -5126, -1200, -120, 117649, 255828, 248250, 137512, 45756, 8640, 720, -2097152, -5187775, -5846760, -3892430, -1651480, -445572, -70560, -5040
Offset: 0
Examples
Triangle begins: n\k | 1 W W^2 W^3 W^4 ================================== 1 | 1 2 | -2 -1 3 | 9 8 2 4 | -64 -79 -36 -6 5 | 625 974 622 192 24 ... T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.
Links
- G. C. Greubel, Table of n, a(n) for the first 75 rows, flattened
- A. F. Beardon, Winding Numbers, Unwinding Numbers, and the Lambert W Function, Computational Methods and Function Theory, 2021.
- George C. Greubel, On Szasz-Mirakyan-Jain Operators preserving exponential functions, arXiv:1805.06968 [math.CA], 2018.
- Roy M. Howard, Schröder Based Series for the Lambert W Function, Curtin Univ. (Australia), ResearchGate (2025). See p. 8. See also On Schröder-Type Series Expansions for the Lambert W Function, AppliedMath (2025) Vol. 5, No. 2, Art. No. 66.
- G. A. Kalugin and D. J. Jeffrey, Unimodal sequences show that Lambert is Bernstein, C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) pp. 50-56, 2011; arXiv:1011.5940 [math.CA], 2010.
- Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Lambert W-Function
Crossrefs
Programs
-
Maple
# After Vladimir Kruchinin, for 0 <= m <= n: T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # Peter Luschny, Feb 23 2018
-
Mathematica
Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* Michael Somos, Jun 07 2012 *) T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* Michael Somos, Jun 07 2012 *)
-
Maxima
B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n); a(n):=B(n)*(1+x)^(2*n-1); /* Vladimir Kruchinin, Apr 07 2011 */
-
Maxima
a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1)); T(n, k):=coeff(ratsimp(a(n)), x, k); for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1)); /* Vladimir Kruchinin, Oct 09 2012 */ T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* Vladimir Kruchinin, Feb 20 2018 */
Formula
E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - Vladeta Jovovic, Nov 19 2003
a(n) = B(n)*(1+x)^(2*n-1), where B(1) = 1/(1+x), and for n>=2, B(n) = -(n!/(1+x)^n)*Sum_{m=1..n-1} (B(m)/m!)*Sum_{j=1..m} (-1)^(m-j)*binomial(m,j)*Sum_{i=0..n} j^(n-i)*binomial(j,i)*x^(m-i)/(n-i)!. - Vladimir Kruchinin, Apr 07 2011
Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - Peter Bala, Jul 22 2012
T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - Vladimir Kruchinin, Feb 20 2018
Comments