cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042977 Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.

Original entry on oeis.org

1, -2, -1, 9, 8, 2, -64, -79, -36, -6, 625, 974, 622, 192, 24, -7776, -14543, -11758, -5126, -1200, -120, 117649, 255828, 248250, 137512, 45756, 8640, 720, -2097152, -5187775, -5846760, -3892430, -1651480, -445572, -70560, -5040
Offset: 0

Views

Author

Keywords

Comments

The first derivative of the Lambert W function is given by dW/dz = exp(-W)/(1+W). Further differentiation yields d^2/dz^2(W) = exp(-2*W)*(-2-W)/(1+W)^3, d^3/dz^3(W) = exp(-3*W)*(9+8*W+2*W^2)/(1+W)^5 and, in general, d^n/dz^n(W) = exp(-n*W)*R(n,W)/(1+W)^(2*n-1), where R(n,W) are the row polynomials of this triangle. - Peter Bala, Jul 22 2012
Conjecture: the polynomials have no real roots greater than or equal to -1. This is equivalent to the statement that the derivatives of the 0th branch of the Lambert W function have no real roots greater than -1/e. - Colin Linzer, Jan 29 2025

Examples

			Triangle begins:
 n\k |    1    W   W^2   W^3   W^4
==================================
  1  |    1
  2  |   -2   -1
  3  |    9    8     2
  4  |  -64  -79   -36    -6
  5  |  625  974   622   192    24
...
T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.
		

Crossrefs

Cf. A013703 (twice row sums), A000444, A000525, A064781, A064785, A064782.
First column A000169, main diagonal A000142, first subdiagonal A052582.
Cf. A054589.

Programs

  • Maple
    # After Vladimir Kruchinin, for 0 <= m <= n:
    T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # Peter Luschny, Feb 23 2018
  • Mathematica
    Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm
    Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* Michael Somos, Jun 07 2012 *)
    T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* Michael Somos, Jun 07 2012 *)
  • Maxima
    B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);
    a(n):=B(n)*(1+x)^(2*n-1);
    /* Vladimir Kruchinin, Apr 07 2011 */
    
  • Maxima
    a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));
    T(n, k):=coeff(ratsimp(a(n)), x, k);
    for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));
    /* Vladimir Kruchinin, Oct 09 2012 */
    T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* Vladimir Kruchinin, Feb 20 2018 */

Formula

E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - Vladeta Jovovic, Nov 19 2003
a(n) = B(n)*(1+x)^(2*n-1), where B(1) = 1/(1+x), and for n>=2, B(n) = -(n!/(1+x)^n)*Sum_{m=1..n-1} (B(m)/m!)*Sum_{j=1..m} (-1)^(m-j)*binomial(m,j)*Sum_{i=0..n} j^(n-i)*binomial(j,i)*x^(m-i)/(n-i)!. - Vladimir Kruchinin, Apr 07 2011
Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - Peter Bala, Jul 22 2012
T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - Vladimir Kruchinin, Feb 20 2018