A043000 Number of digits in all base-b representations of n, for 2 <= b <= n.
2, 4, 7, 9, 11, 13, 16, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 54, 56, 59, 61, 63, 65, 67, 70, 72, 74, 76, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 2
Examples
5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 3+2+2+2 = 9.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 2..20000
- Vaclav Kotesovec, Plot of a(n)/(2*n) for n = 2..1000000
Programs
-
Magma
[&+[Floor(Log(i,i*n)):k in [2..n]]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
-
Maple
A043000 := proc(n) add( nops(convert(n,base,b)),b=2..n) ; end proc: # R. J. Mathar, Jun 04 2011
-
Mathematica
Table[Total[IntegerLength[n,Range[2,n]]],{n,2,60}] (* Harvey P. Dale, Apr 23 2019 *)
-
PARI
a(n)=sum(b=2,n,#digits(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
-
PARI
a(n)= n-1 +sum(b=2,n,logint(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
-
PARI
a(n) = {2*n-2+sum(i=2, logint(n, 2), sqrtnint(n, i)-1)} \\ David A. Corneth, Dec 31 2019
-
PARI
first(n) = my(res = vector(n)); res[1] = 2; for(i = 2, n, inc = numdiv(gcd(factor(i+1)[,2]))+1; res[i] = res[i-1]+inc); res \\ David A. Corneth, Dec 31 2019
-
Python
def count(n,b): c = 0 while n > 0: n, c = n//b, c+1 return c n = 0 while n < 50: n = n+1 a, b = 0, 1 while b < n: b = b+1 a = a + count(n,b) print(n,a) # A.H.M. Smeets, Dec 14 2019
Formula
a(n) = Sum_{i=2..n} floor(log_i(i*n)); a(n) ~ 2*n. - Vladimir Shevelev, Jun 03 2011 [corrected by Vaclav Kotesovec, Apr 05 2021]
From Ridouane Oudra, Nov 13 2019: (Start)
a(n) = Sum_{i=1..n-1} floor(n^(1/i));
a(n) = n - 1 + Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1);
a(n) = n - 1 + A255165(n). (End)
If n is in A001597 then a(A001597(m)) - a(A001597(m)-1) = 2 + A253642(m), otherwise a(n) - a(n-1) = 2. - A.H.M. Smeets, Dec 14 2019
Comments