A043547 Odd numbers interspersed with double the previous odd number.
1, 2, 3, 6, 5, 10, 7, 14, 9, 18, 11, 22, 13, 26, 15, 30, 17, 34, 19, 38, 21, 42, 23, 46, 25, 50, 27, 54, 29, 58, 31, 62, 33, 66, 35, 70, 37, 74, 39, 78, 41, 82, 43, 86, 45, 90, 47, 94, 49, 98, 51, 102, 53, 106, 55, 110, 57, 114, 59, 118, 61, 122, 63, 126, 65, 130, 67, 134
Offset: 1
Examples
a(1)=1 because n is odd. a(2)=2 because a(1)*2=2.
Links
- E. Angelini, k-chunks sum and division by k, post to the SeqFan list, Mar 22 2013
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Magma
[n*(-1)^n/2-(-1)^n+3*n/2-1 : n in [1..50]]; // Wesley Ivan Hurt, Nov 22 2015
-
Maple
A043547:=n->n*(-1)^n/2-(-1)^n+3*n/2-1: seq(A043547(n), n=1..100); # Wesley Ivan Hurt, Nov 22 2015
-
Mathematica
Flatten[Table[Accumulate[{2 n - 1, 2 n - 1}], {n, 40}]] (* Wesley Ivan Hurt, Nov 22 2015 *) With[{o=Range[1,71,2]},Riffle[o,2o]] (* Harvey P. Dale, Sep 17 2019 *)
-
PARI
A043547(n)=n+!bittest(n,0)*(n-2) \\ M. F. Hasler, Mar 22 2013
-
PARI
Vec(x*(1+2*x)*(1+x^2)/(1-x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 22 2015
Formula
a(n) = (2 - n) * (n - floor(n/2) * 2) + 2 * (n - 1).
G.f.: x*(1+2*x)*(1+x^2)/(1-x^2)^2. - Ralf Stephan, Jun 10 2003
a(2n-1) = 2n-1, a(2n) = 4n-2. - M. F. Hasler, Mar 22 2013
From Wesley Ivan Hurt, Nov 22 2015: (Start)
a(n) = 2*a(n-2) - a(n-4) for n>4.
a(n) = n*(-1)^n/2 - (-1)^n + 3*n/2 - 1. (End)
Extensions
More terms from James Sellers, Mar 01 2000
Comments