cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A022998 If n is odd then n, otherwise 2n.

Original entry on oeis.org

0, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128, 65, 132, 67
Offset: 0

Views

Author

Keywords

Comments

Also for n > 0: numerator of Sum_{i=1..n} 2/(i*(i+1)), denominator=A026741. - Reinhard Zumkeller, Jul 25 2002
For n > 2: a(n) = gcd(A143051((n-1)^2), A143051(1+(n-1)^2)) = A050873(A000290(n-1), A002522(n-1)). - Reinhard Zumkeller, Jul 20 2008
Partial sums give the generalized octagonal numbers A001082. - Omar E. Pol, Sep 10 2011
Multiples of 4 and odd numbers interleaved. - Omar E. Pol, Sep 25 2011
The Pisano period lengths modulo m appear to be A066043(m). - R. J. Mathar, Oct 08 2011
The partial sums a(n)/A026741(n+1) given by R. Zumkeller in a comment above are 2*n/(n+1) (telescopic sum), and thus converge to 2. - Wolfdieter Lang, Apr 09 2013
a(n) = numerator(H(n,1)), where H(n,1) = 2*n/(n+1) is the harmonic mean of 1 and n. a(n) = 2*n/gcd(2n, n+1) = 2*n/gcd(n+1,2). a(n) = A227041(n,1), n>=1. - Wolfdieter Lang, Jul 04 2013
a(n) = numerator of the mean (2n/(n+1), after reduction), of the compositions of n; denominator is given by A001792(n-1). - Clark Kimberling, Mar 11 2014
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -4, 1, -4, ...] = 1/(1 - 1/(4 - 1/(1 - 1/(4 - ...)))) begins [0/1, 1/1, 4/3, 3/2, 8/5, 5/3, 12/7, ...]. The present sequence is the sequence of numerators. The sequence of denominators of the continued fraction convergents [1, 1, 3, 2, 5, 3, 7, ...] is A026741, also a strong divisibility sequence. Cf. A203976. - Peter Bala, May 19 2014
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized octagonal numbers. - Omar E. Pol, Jul 27 2018
a(n) is the number of petals of the Rhodonea curve r = a*cos(n*theta) or r = a*sin(n*theta). - Matt Westwood, Nov 19 2019

Crossrefs

Column 4 of A195151. - Omar E. Pol, Sep 25 2011
Cf. A000034, A001082 (partial sums).
Cf. A227041 (first column). - Wolfdieter Lang, Jul 04 2013
Row 2 of A349593. A385555, A385556, A385557, A385558, A385559, and A385560 are respectively rows 3, 4, 5-6, 7, 8, and 9-10.

Programs

  • Haskell
    a022998 n = a000034 (n + 1) * n
    a022998_list = zipWith (*) [0..] $ tail a000034_list
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Magma
    [((-1)^n+3)*n/2: n in [0..70]]; // Vincenzo Librandi, Sep 17 2011
    
  • Maple
    A022998 := proc(n) if type(n,'odd') then n ; else 2*n; end if; end proc: # R. J. Mathar, Mar 10 2011
  • Mathematica
    Table[n (3 + (-1)^n)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Dec 13 2013 *)
    Table[If[OddQ[n],n,2n],{n,0,150}] (* or *) Riffle[ 2*Range[ 0,150,2], Range[ 1,150,2]] (* Harvey P. Dale, Feb 06 2017 *)
  • PARI
    a(n)=if(n%2,n,2*n)
    
  • Python
    def A022998(n): return n if n&1 else n<<1 # Chai Wah Wu, Mar 05 2024
  • SageMath
    [n*(1+((n+1)%2)) for n in (0..80)] # G. C. Greubel, Jul 31 2022
    

Formula

Denominator of (n+1)*(n-1)*(2*n+1)/(2*n) (for n > 0).
a(n+1) = lcm(n, n+2)/n + lcm(n, n+2)/(n+2) for all n >= 1. - Asher Auel, Dec 15 2000
Multiplicative with a(2^e) = 2^(e+1), a(p^e) = p^e, p > 2.
G.f. x*(1 + 4*x + x^2)/(1-x^2)^2. - Ralf Stephan, Jun 10 2003
a(n) = 3*n/2 + n*(-1)^n/2 = n*(3 + (-1)^n)/2. - Paul Barry, Sep 04 2003
a(n) = A059029(n-1) + 1 = A043547(n+2) - 2.
a(n)*a(n+3) = -4 + a(n+1)*a(n+2).
a(n) = n*(((n+1) mod 2) + 1) = n^2 + 2*n - 2*n*floor((n+1)/2). - William A. Tedeschi, Feb 29 2008
a(n) = denominator((n+1)/(2*n)) for n >= 1; A026741(n+1) = numerator((n+1)/(2*n)) for n >= 1. - Johannes W. Meijer, Jun 18 2009
a(n) = 2*a(n-2) - a(n-4).
Dirichlet g.f. zeta(s-1)*(1+2^(1-s)). - R. J. Mathar, Mar 10 2011
a(n) = n * (2 - n mod 2) = n * A000034(n+1). - Reinhard Zumkeller, Mar 31 2012
a(n) = floor(2*n/(1 + (n mod 2))). - Wesley Ivan Hurt, Dec 13 2013
From Ilya Gutkovskiy, Mar 16 2017: (Start)
E.g.f.: x*(2*sinh(x) + cosh(x)).
It appears that a(n) is the period of the sequence k*(k + 1)/2 mod n. (End) [This is correct; see A349593. - Jianing Song, Jul 03 2025]
a(n) = Sum_{d | n} A345082(d). - Peter Bala, Jan 13 2024

Extensions

More terms from Michael Somos, Aug 07 2000

A059029 a(n) = n if n is even, 2*n + 1 if n is odd.

Original entry on oeis.org

0, 3, 2, 7, 4, 11, 6, 15, 8, 19, 10, 23, 12, 27, 14, 31, 16, 35, 18, 39, 20, 43, 22, 47, 24, 51, 26, 55, 28, 59, 30, 63, 32, 67, 34, 71, 36, 75, 38, 79, 40, 83, 42, 87, 44, 91, 46, 95, 48, 99, 50, 103, 52, 107, 54, 111, 56, 115, 58, 119, 60, 123, 62, 127, 64, 131, 66, 135
Offset: 0

Views

Author

Asher Auel, Dec 15 2000

Keywords

Comments

a(n-1) = n^k - 1 mod 2*n, n >= 1, for any k >= 2, also for k = n. - Wolfdieter Lang, Dec 21 2011

Crossrefs

a(n) = A022998(n+1) - 1 = A043547(n+3) - 3. Partial sums in A032438.

Programs

  • Magma
    [n+((n+1)/2)*(1-(-1)^n): n in [0..70]]; // Vincenzo Librandi, Aug 14 2011
  • Maple
    B := (n,m) -> lcm(n,m)/n + lcm(n,m)/m - 1: seq(B(m+2,m),m=1..90);
  • Mathematica
    Table[n +(n+1)*(1-(-1)^n)/2, {n,0,70}] (* G. C. Greubel, Nov 08 2018 *)
    Table[If[EvenQ[n],n,2n+1],{n,0,70}] (* or *) LinearRecurrence[{0,2,0,-1},{0,3,2,7},70] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    a(n)=if(n%2,2*n+1,n)
    

Formula

G.f.: x*(x^2 + 2*x + 3)/(1 - x^2)^2. - Ralf Stephan, Jun 10 2003
Third main diagonal of A059026: a(n) = B(n+2, n) = lcm(n+2, n)/(n+2) + lcm(n+2, n)/n - 1 for all n >= 1.
a(2*n) + a(2*n+1) = A016945(n). - Paul Curtz, Aug 29 2008
E.g.f.: 2*x*cosh(x) + (1 + x)*sinh(x). - Franck Maminirina Ramaharo, Nov 08 2018

Extensions

New description from Ralf Stephan, Jun 10 2003

A212831 a(4*n) = 2*n, a(2*n+1) = 2*n+1, a(4*n+2) = 2*n+2.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 4, 7, 4, 9, 6, 11, 6, 13, 8, 15, 8, 17, 10, 19, 10, 21, 12, 23, 12, 25, 14, 27, 14, 29, 16, 31, 16, 33, 18, 35, 18, 37, 20, 39, 20, 41, 22, 43, 22, 45, 24, 47, 24, 49, 26, 51, 26, 53, 28, 55, 28, 57, 30, 59, 30, 61, 32, 63, 32, 65, 34, 67, 34, 69, 36, 71, 36, 73, 38, 75
Offset: 0

Views

Author

Paul Curtz, Aug 14 2012

Keywords

Comments

First differences: (1, 1, 1, -1, 3, -1, 3, -3, 5,...) = (1, A186422).
Second differences: (0, 0, -2, 4, -4, 4, -6, 8, ...) = (-1)^(n+1) * A201629(n).
Interleave the terms with even indices of the companion A215495 and this one to get (A215495(0), A212831(0), A215495(2), A212831(2),...) = (1, 0, 1, 2, 3, 2, 3, 4, 5, 4,...) = A106249, up to the initial term = A083219 = A083220/2.

Crossrefs

Programs

  • Magma
    [(1/4)*((1 +(-1)^n)*(1 - (-1)^Floor(n/2)) + (3 -(-1)^n)*n): n in [0..50]]; // G. C. Greubel, Apr 25 2018
  • Mathematica
    a[n_] := (1/4)*((-(1 + (-1)^n))*(-1 + (-1)^Floor[n/2]) - (-3 + (-1)^n)*n ); Table[a[n], {n, 0, 84}] (* Jean-François Alcover, Sep 18 2012 *)
    LinearRecurrence[{0,1,0,1,0,-1},{0,1,2,3,2,5},80] (* Harvey P. Dale, May 29 2016 *)
  • PARI
    A212831(n)=if(bittest(n,0), n, n\2+bittest(n,1)) \\ M. F. Hasler, Oct 21 2012
    
  • PARI
    for(n=0,50, print1((1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n), ", ")) \\ G. C. Greubel, Apr 25 2018
    

Formula

a(n) + A215495(n) = A043547(n).
a(n) = -A214283(n)/A000108([n/2]).
a(n+1) = (A186421(n)=0,1,2,1,4,...) + 1.
a(2*n) = A052928(n+1).
a(n+2) - a(n) = 2, 2, 0, 2. (period 4).
a(n) = a(n-2) +a(n-4) -a(n-6); also holds for A215495(n).
G.f.: x*(1+2*x+2*x^2+x^4) / ( (x^2+1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Aug 21 2012
a(n) = (1/4)*((1 +(-1)^n)*(1 - (-1)^floor(n/2)) + (3 -(-1)^n)*n). - G. C. Greubel, Apr 25 2018

Extensions

Corrected and edited by M. F. Hasler, Oct 21 2012

A226008 a(0) = 0; for n>0, a(n) = denominator(1/4 - 4/n^2).

Original entry on oeis.org

0, 4, 4, 36, 1, 100, 36, 196, 16, 324, 100, 484, 9, 676, 196, 900, 64, 1156, 324, 1444, 25, 1764, 484, 2116, 144, 2500, 676, 2916, 49, 3364, 900, 3844, 256, 4356, 1156, 4900, 81, 5476, 1444, 6084, 400, 6724, 1764, 7396, 121, 8100
Offset: 0

Views

Author

Paul Curtz, May 22 2013

Keywords

Comments

Numerators are in A225948.
Repeated terms of A016826 are in the positions 1, 2, 3, 6, 5, 10, ... (A043547).

Examples

			a(0) = (-1+1)^2 = 0, a(1) = (-3+5)^2 = 4, a(2) = (-1+3)^2 = 4.
		

Crossrefs

Cf. A225975 (associated square roots).

Programs

  • Magma
    [0] cat [Denominator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 23 2013
  • Mathematica
    Join[{0},Table[Denominator[1/4 - 4/n^2], {n, 49}]] (* Alonso del Arte, May 22 2013 *)

Formula

a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(8n) = A016802(n), a(8n+4) = A016754(n).
a(4n) = A154615(n).
a(4n+1) = A017090(n).
a(4n+2) = a(2n+1) = A016826(n); a(2n) = A061038(n).
a(4n+3) = A017138(n).
From Bruno Berselli, May 23 2013: (Start)
G.f.: x*(4 +4*x +36*x^2 +x^3 +100*x^4 +36*x^5 +196*x^6 +16*x^7 +312*x^8 +88*x^9 +376*x^10 +6*x^11 +376*x^12 +88*x^13 +312*x^14 +16*x^15 +196*x^16 +36*x^17 +100*x^18 +x^19 +36*x^20 +4*x^21 +4*x^22)/(1-x^8)^3.
a(n) = n^2*(6*cos(3*Pi*n/4)+6*cos(Pi*n/4)-54*cos(Pi*n/2)-219*(-1)^n+293)/128.
a(n+9) = a(n+1)*((n+9)/(n+1))^2. (End)
Sum_{n>=1} 1/a(n) = 19*Pi^2/96. - Amiram Eldar, Aug 14 2022

Extensions

Edited by Bruno Berselli, May 23 2013

A225975 Square root of A226008(n).

Original entry on oeis.org

0, 2, 2, 6, 1, 10, 6, 14, 4, 18, 10, 22, 3, 26, 14, 30, 8, 34, 18, 38, 5, 42, 22, 46, 12, 50, 26, 54, 7, 58, 30, 62, 16, 66, 34, 70, 9, 74, 38, 78, 20, 82, 42, 86, 11, 90, 46, 94, 24, 98, 50, 102, 13, 106, 54, 110, 28, 114, 58
Offset: 0

Views

Author

Paul Curtz, May 22 2013

Keywords

Comments

Repeated terms of A016825 are in the positions 1,2,3,6,5,10,... (A043547).
From Wolfdieter Lang, Dec 04 2013: (Start)
This sequence a(n), n>=1, appears in the formula 2*sin(2*Pi/n) = R(p(n), x) modulo C(a(n), x), with x = rho(a(n)) = 2*cos(Pi/a(n)), the R-polynomials given in A127672 and the minimal C-polynomials of rho given in A187360. This follows from the identity 2*sin(2*Pi/n) = 2*cos(Pi*p(n)/a(n)) with gcd(p(n), a(n)) = 1. For p(n) see a comment on A106609,
Because R is an integer polynomial it shows that 2*sin(2*Pi/n) is an integer in the algebraic number field Q(rho(a(n))) of degree delta(a(n)) (the degree of C(a(n), x)), with delta(k) = A055034(k). This degree is given in A093819. For the coefficients of 2*sin(2*Pi/n) in the power basis of Q(rho(a(n))) see A231189 . (End)

Examples

			For the first formula: a(0)=-1+1=0, a(1)=-3+5=2, a(2)=-1+3=2, a(3)=-1+7=6, a(4)=0+1=1.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_] := Sqrt[Denominator[1/4 - 4/n^2]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, May 30 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,2,2,6,1,10,6,14,4,18,10,22,3,26,14,30},60] (* Harvey P. Dale, Nov 21 2019 *)

Formula

a(n) = A106609(n-4) + A106609(n+4) with A106609(-4)=-1, A106609(-3)=-3, A106609(-2)=-1, A106609(-1)=-1.
a(n) = 2*a(n-8) -a(n-16).
a(2n+1) = A016825(n), a(2n) = A145979(n-2) for n>1, a(0)=0, a(2)=2.
a(4n) = A022998(n).
a(4n+1) = A017089(n).
a(4n+2) = A016825(n).
a(4n+3) = A017137(n).
G.f.: x*(2 +2*x +6*x^2 +x^3 +10*x^4 +6*x^5 +14*x^6 +4*x^7 +14*x^8 +6*x^9 +10*x^10 +x^11 +6*x^12 +2*x^13 +2*x^14)/((1-x)^2*(1+x)^2*(1+x^2)^2*(1+x^4)^2). [Bruno Berselli, May 23 2013]
From Wolfdieter Lang, Dec 04 2013: (Start)
a(n) = 2*n if n is odd; if n is even then a(n) is n if n/2 == 1, 3, 5, 7 (mod 8), it is n/2 if n/2 == 0, 4 (mod 8) and it is n/4 if n/2 == 2, 6 (mod 8). This leads to the given G.f..
With c(n) = A178182(n), n>=1, a(n) = c(n)/2 if c(n) is even and c(n) if c(n) is odd. This leads to the preceding formula. (End)

Extensions

Edited by Bruno Berselli, May 24 2013

A226023 A142705 (numerators of 1/4-1/(4n^2)) sorted to natural order.

Original entry on oeis.org

0, 2, 3, 6, 12, 15, 20, 30, 35, 42, 56, 63, 72, 90, 99, 110, 132, 143, 156, 182, 195, 210, 240, 255, 272, 306, 323, 342, 380, 399, 420, 462, 483, 506, 552, 575, 600, 650, 675, 702, 756, 783, 812, 870, 899
Offset: 0

Views

Author

Paul Curtz, May 23 2013

Keywords

Comments

A198442(n) without indices 4*n+2.
a(n)/A130823(n+1) = 0, 2,3,2, 4,5,4, 6,7,6, 8,9,8, ... (equal to A133310+1, after 0; see also A008611).
-1, 0, 2, 3, is divisible by 1 (for a(-1)=-1),
3, 6, 12, 15, 3,
15, 20, 30, 35 5,
35, 42, 56, 63 7,
63, 72, 90, 99 9,
99, 110, 132, 143, 11, etc.
First column: A000466(n),
second column: A002943(n),
third column: A002939(n+1),
fourth column: A000466(n+1).
a(n) is also the numerator of 1/4-1/(4*n+2)^2: 0/1, 2/9, 3/16, 6/25, 12/49, 15/64, 20/81, 30/121, 35/144, 42/169, 56/225,...
The n-th denominator is equal to 4*a(n) + A146325(n+2).
Note that the differences of a(n-1): 1, 2, 1, 3, 6, 3, 5, 10, 5, 7, 14, 7, 9, 18, 9, 11, 22,... (from A043547 by pairs and 2*n+1) has the same recurrence.
(Of course every sequence which obeys a linear recurrence with constant coefficients has first differences that obey the same linear recurrence. - R. J. Mathar, Jun 14 2013)

Crossrefs

Trisections: A002939, A000466, A002943.

Programs

  • Maple
    A226023 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[0,2,3,6,12,15,20]) ;
        else
            procname(n-1)+2*procname(n-3)-2*procname(n-4)-procname(n-6)+procname(n-7) ;
        end if;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    A226023[n_]:=Floor[(2n+1)/3]Floor[(2n+5)/3];
    Array[A226023,100,0] (* Paolo Xausa, Dec 05 2023 *)

Formula

a(n) = floor( (2*n + 1)/3 ) * floor( (2*n + 5)/3 ) = A004396(n) * A004396(n+2).
Recurrences: a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7).
a(n+15) - a(n) = 10*A042968(n+8).
a(n+1) - a(n-2) = 2*A042968(n) with a(-2)=0, a(-1)=-1.
G.f.: x*(2+x+3*x^2+2*x^3+x^4-x^5)/((1-x)^3 * (1+x+x^2)^2). [Ralf Stephan, May 24 2013]

A225055 Irregular triangle which lists the three positions of 2*n-1 in A060819 in row n.

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 5, 10, 20, 7, 14, 28, 9, 18, 36, 11, 22, 44, 13, 26, 52, 15, 30, 60, 17, 34, 68, 19, 38, 76, 21, 42, 84, 23, 46, 92, 25, 50, 100, 27, 54, 108, 29, 58, 116, 31, 62, 124, 33, 66, 132, 35, 70, 140, 37, 74, 148
Offset: 1

Views

Author

Paul Curtz, Apr 26 2013

Keywords

Comments

There are no multiples of 8 in the triangle.
A047592 contains a sorted list of all elements of the triangle.
The triangle is a member of a family of triangles with parameter k that list the k positions of 2*n-1: 2*n-1 in A000027 (k=1), A043547 the k=2 positions in A026741, the triangle 1,2,4,8; 3,6,12,24;... with the k=4 positions in A106609, or the triangle 1,2,4,8,16; 3,6,12,24,48;... with the k=5 positions in A106617.

Examples

			1, 2, 4;  # 1 at A060819(1), A060819(2) and A060819(4)
3, 6, 12;  # 3 at A060819(3), A060819(6) and A060819(12)
5, 10, 20;
7, 14, 28;
9, 18, 36;
11, 22, 44;
13, 26, 52;
15, 30, 60;
		

Crossrefs

Programs

  • Mathematica
    numberOfTriplets = 19; A060819 = Table[n/GCD[n, 4], {n, 1, 8*numberOfTriplets}]; Table[Position[A060819, 2*n-1], {n, 1, numberOfTriplets}] // Flatten (* Jean-François Alcover, Apr 30 2013 *)

Formula

T(n,1) = 2*n-1. T(n,2) = 4*n-2. T(n,3) = 8*n-4.

A174994 Repeat (8*n+4)^2.

Original entry on oeis.org

16, 16, 144, 144, 400, 400, 784, 784, 1296, 1296, 1936, 1936, 2704, 2704, 3600, 3600, 4624, 4624, 5776, 5776, 7056, 7056, 8464, 8464, 10000, 10000, 11664, 11664, 13456, 13456, 15376, 15376, 17424, 17424, 19600, 19600, 21904, 21904, 24336, 24336, 26896, 26896, 29584, 29584, 32400, 32400, 35344, 35344
Offset: 0

Views

Author

Paul Curtz, Dec 02 2010

Keywords

Crossrefs

Programs

  • Mathematica
    (8*Floor[Range[0, 50]/2] + 4)^2 (* Wesley Ivan Hurt, Jul 23 2025 *)
  • PARI
    Vec((-16-96*x^2-16*x^4)/((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

a(n) = A174683(A043547(n+1)).
a(2n) = a(2n+1) = A017114(n).
From R. J. Mathar, Dec 02 2010: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: ( -16-96*x^2-16*x^4 ) / ( (1+x)^2*(x-1)^3 ). (End)
From Colin Barker, Jan 26 2016: (Start)
a(n) = 8*(2*n^2+2*(-1)^n*n+2*n+(-1)^n+1).
a(n) = 16*n^2+32*n+16 for n even.
a(n) = 16*n^2 for n odd. (End)
a(n) = (8*floor(n/2)+4)^2. - Bruno Berselli, Jan 26 2016

A321220 a(n) = n+2 if n is even, otherwise a(n) = 2*n+1 if n is odd.

Original entry on oeis.org

2, 3, 4, 7, 6, 11, 8, 15, 10, 19, 12, 23, 14, 27, 16, 31, 18, 35, 20, 39, 22, 43, 24, 47, 26, 51, 28, 55, 30, 59, 32, 63, 34, 67, 36, 71, 38, 75, 40, 79, 42, 83, 44, 87, 46, 91, 48, 95, 50, 99, 52, 103, 54, 107, 56, 111, 58, 115, 60, 119, 62, 123, 64, 127, 66
Offset: 0

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Comments

For n >= 3, a(n) is the Harborth Constant for the Dihedral groups D2n. See Balachandra link, Theorem 1 p. 2.

Crossrefs

A299174 and A004767 interleaved.

Programs

  • Magma
    [IsOdd(n) select (2*n+1) else n+2: n in [0..80]]; // Vincenzo Librandi, Nov 01 2018
  • Maple
    a:=n->`if`(modp(n,2)=0,n+2,2*n+1): seq(a(n),n=0..70); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    CoefficientList[Series[(2 + 3 x + x^3)/(1 - x^2)^2, {x, 0, 64}], x] (* Michael De Vlieger, Oct 31 2018 *)
    Table[If[OddQ[n], (2 n + 1), n + 2], {n, 0, 80}] (* Vincenzo Librandi, Nov 01 2018 *)
  • PARI
    a(n) = if (n%2, 2*n+1, n+2);
    
  • PARI
    Vec((2 + 3*x + x^3) / ((1 - x)^2*(1 + x)^2) + O(x^80)) \\ Colin Barker, Oct 31 2018
    

Formula

a(n) = A043547(n+1) + 1.
From Colin Barker, Oct 31 2018: (Start)
G.f.: (2 + 3*x + x^3) / (1-x^2)^2.
a(n) = 2*a(n-2) - a(n-4) for n > 3.
(End)
Showing 1-9 of 9 results.