cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A218009 Binomial transform of A212831(n).

Original entry on oeis.org

0, 1, 4, 12, 30, 70, 160, 364, 824, 1848, 4096, 8976, 19488, 42016, 90112, 192448, 409472, 868224, 1835008, 3866880, 8126976, 17039872, 35651584, 74447872, 155187200, 322959360, 671088640, 1392513024, 2885689344, 5972697088, 12348030976, 25501351936, 52613316608
Offset: 0

Views

Author

Paul Curtz, Oct 18 2012

Keywords

Comments

Companion to A217988.
Considering a(n+1) - 2*a(n) = 1,2,4,6,10,20,44,96,200,... = b(n), is
b(n+3) - 2*b(n+2) = -2,-2,0,4,8,8,0,-16,-32,-32,0,... = -A009545(n+2).

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4, 12, 30, 70]; [n le 6 select I[n] else 6*Self(n-1) - 14*Self(n-2) + 16*Self(n-3) - 8*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 15 2012
  • Mathematica
    a[n_] := Sum[(1/4)*Binomial[n, k]*((-(1 + (-1)^k))*(-1 + (-1)^Floor[k/2]) - (-3 + (-1)^k)*k), {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 18 2012 *)
    CoefficientList[Series[x*(1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4)/((1 - 2*x)^2*(1 - 2*x + 2*x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)

Formula

G.f.: x*(1-2*x+2*x^2-2*x^3+2*x^4)/((1-2*x)^2*(1-2*x+2*x^2)). - Bruno Berselli, Oct 18 2012
a(n) = 2^(n-3)*(3*n+2)+(1+i)^(n-4)+(1-i)^(n-4), where i=sqrt(-1) and n>1, with a(0)=0, a(1)=1. - Bruno Berselli, Oct 18 2012
a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -8*a(n-4).

A214283 Smallest Euler characteristic of a downset on an n-dimensional cube.

Original entry on oeis.org

0, -1, -2, -3, -4, -10, -20, -35, -56, -126, -252, -462, -792, -1716, -3432, -6435, -11440, -24310, -48620, -92378, -167960, -352716, -705432, -1352078, -2496144, -5200300, -10400600, -20058300, -37442160, -77558760, -155117520, -300540195
Offset: 1

Views

Author

Terence Tao, Jul 09 2012

Keywords

Comments

An m-downset is a set of subsets of 1..m such that if S is in the set, so are all subsets of S. The Euler characteristic of a downset is the number of sets in the downset with an even cardinality, minus the number with an odd cardinality.

Crossrefs

Programs

Formula

a(n=2k) = -binomial(n-1,n/2) = -binomial(2k-1,k),
a(n=4k+3) = -binomial(n-1,(n-1)/2) = -binomial(4k+2,2k+1),
a(n=4k+1) = -binomial(n-1,(n+1)/2) = -binomial(4k,2k+1).
a(n) = A214282(n) - A001405(n). - Reinhard Zumkeller, Jul 14 2012
For n > 1: a(n) = - A007318(n-1, A004525(n)). - Reinhard Zumkeller, Jul 14 2012
a(n+1) = -A000108(n/2) * A212831(n). - Paul Curtz, Nov 04 2012

A212849 Numbers whose sum of prime factors (counted with multiplicity) is a triangular number.

Original entry on oeis.org

1, 3, 8, 9, 21, 25, 26, 30, 32, 36, 38, 44, 68, 86, 105, 106, 112, 115, 125, 126, 138, 150, 155, 160, 164, 178, 180, 186, 187, 192, 195, 203, 206, 208, 216, 231, 234, 243, 266, 275, 290, 299, 302, 305, 323, 330, 338, 343, 348, 352, 365, 366, 380, 396, 404, 413
Offset: 1

Views

Author

Jonathan Vos Post, May 28 2012

Keywords

Comments

This is to A212831 Numbers whose sum of prime factors is a square (counted with multiplicity) as A000290 squares are to A000217 triangular numbers.

Examples

			sopfr(21) = sum of primes dividing 21 (with repetition) = 10, which is the  4th triangular number, so 21 is in this sequence.
The number 1 is here because the sum of its prime factors is 0, which is a triangular number.
		

Crossrefs

Programs

  • Mathematica
    triangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; fQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; triangularQ[Dot[p, e]]]; Join[{1}, Select[Range[2, 500], fQ]] (* T. D. Noe, May 30 2012 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); \\ A001414
    isok(n) = ispolygonal(sopfr(n), 3); \\ Michel Marcus, May 02 2018

Formula

{k such that A001414(k) = sopfr(k) is in A000217}.

A246416 A permutation of essentially the duplicate nonnegative numbers: a(4n) = n + 1/2 - (-1)^n/2, a(2n+1) = a(4n+2) = 2n+1.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 7, 2, 9, 5, 11, 4, 13, 7, 15, 4, 17, 9, 19, 6, 21, 11, 23, 6, 25, 13, 27, 8, 29, 15, 31, 8, 33, 17, 35, 10, 37, 19, 39, 10, 41, 21, 43, 12, 45, 23, 47, 12, 49, 25, 51, 14, 53, 27, 55, 14, 57, 29, 59, 16, 61, 31, 63, 16
Offset: 0

Views

Author

Paul Curtz, Sep 14 2014

Keywords

Comments

A permutation of A004526 (n > 0).
0 is at its own place. Distance between the two (2*k+1)'s: 2*k+1 terms. 0 is in position 0, the first 1 in position 1, the second 1 in position 2, the first 2 in position 4, the second 2 in position 8. Hence, r(n) = 0, 1, 2, 4, 8, 3, 6, 12, 16, 5, 10, 20, 24, ..., a permutation of A001477. See A225055. The recurrence r(n) = r(n-4) + r(n-8) - r(n-12) is the same as for a(n).
A061037(n+3) is divisible by a(n+5) (= 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 3, ...). Hence a link, via A212831 and A214282, between the Catalan numbers A000108 and the Balmer series.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,3,2,5,3,7,2,9,5,11,4,13,7,15,4,17,9,19,6,21,11,23]; [n le 24 select I[n] else 3*Self(n-8)-3*Self(n-16)+Self(n-24): n in [1..80]]; // Vincenzo Librandi, Oct 15 2014
  • Maple
    A246416:=n->n*(1+floor((2-n)/4)+floor((n-2)/4))/2+n*(1+floor((1-n)/2)+floor((n-1)/2))+(-n-2+2*(-1)^(n/4))*(ceil(n/4)-floor(n/4)-1)/4: seq(A246416(n), n=0..50); # Wesley Ivan Hurt, Sep 14 2014
  • Mathematica
    Table[n (1 + Floor[(2 - n)/4] + Floor[(n - 2)/4])/2 + n (1 + Floor[(1 - n)/2] + Floor[(n - 1)/2]) + (-n - 2 + 2 (-1)^(n/4)) (Ceiling[n/4] - Floor[n/4] - 1)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Sep 14 2014 *)
    a[n_] := Switch[Mod[n, 4], 0, n/4-(-1)^(n/4)/2+1/2, 1|3, n, 2, n/2]; Table[a[n], {n, 0, 64}] (* Jean-François Alcover, Oct 09 2014 *)
    LinearRecurrence[{0,0,0,1,0,0,0,1,0,0,0,-1},{0,1,1,3,2,5,3,7,2,9,5,11},70] (* Harvey P. Dale, Mar 23 2015 *)
  • PARI
    a(n)=if(n%4,n/(2-n%2),if(n%8,1,0)+n/4) \\ Charles R Greathouse IV, Sep 14 2014
    

Formula

a(n) = 3*a(n-8) - 3*a(n-16) + a(n-24).
a(n+4) = a(n) + period 8: repeat [2, 4, 2, 4, 0, 4, 2, 4].
a(n+8) = a(n) + period 4: repeat [2, 8, 4, 8] (= 2 * A176895).
a(2n) = A212831(n).
a(n) = n*(1+floor((2-n)/4)+floor((n-2)/4))/2+n*(1+floor((1-n)/2)+floor((n-1)/2))+(-n-2+2*(-1)^(n/4))*(ceiling(n/4)-floor(n/4)-1)/4. - Wesley Ivan Hurt, Sep 14 2014
a(n) = a(n-4) + a(n-8) - a(n-12). - Charles R Greathouse IV, Sep 14 2014
G.f.: x*(x^10+x^9+3*x^8+4*x^6+2*x^5+4*x^4+2*x^3+3*x^2+x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2*(x^4+1)). - Colin Barker, Sep 15 2014

A212918 Numbers whose sum of prime factors (counted with multiplicity) is a pentagonal number (A000326).

Original entry on oeis.org

1, 5, 6, 35, 42, 50, 57, 60, 64, 72, 81, 85, 102, 121, 124, 182, 188, 201, 232, 260, 261, 267, 308, 312, 351, 440, 452, 495, 519, 528, 594, 645, 649, 688, 735, 741, 774, 784, 805, 854, 861, 875, 882, 901, 966, 1025, 1027, 1045, 1050, 1081, 1105, 1112, 1119
Offset: 1

Views

Author

Jonathan Vos Post, May 31 2012

Keywords

Comments

This is to pentagonal numbers A000326 as A000290 squares are to A212831 numbers whose sum of prime factors is a square (counted with multiplicity) and as A000217 triangular numbers are to A212849 Numbers whose sum of prime factors (counted with multiplicity) is a triangular number.

Examples

			a(3) = 35 because sopfr(35) = sum of prime factors of 35 = 5 + 7 = 12, and  12 is the 3rd pentagonal number.
		

Crossrefs

Programs

  • Mathematica
    pentagonalQ[n_] := IntegerQ[(1 + Sqrt[1 + 24*n])/6]; pfs[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Dot[p, e]]; Select[Range[1500], pentagonalQ[pfs[#]] &] (* T. D. Noe, May 31 2012 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); \\ A001414
    isok(n) = ispolygonal(sopfr(n), 5); \\ Michel Marcus, May 02 2018

Formula

{k such that A001414(k) = sopfr(k) is in A000326(j) = j*(3*j-1)/2 for some integer j}.

Extensions

Corrected by T. D. Noe, May 31 2012
Showing 1-5 of 5 results.