cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A217988 Binomial transform of A215495(n).

Original entry on oeis.org

1, 2, 4, 10, 26, 66, 160, 372, 840, 1864, 4096, 8944, 19424, 41952, 90112, 192576, 409728, 868480, 1835008, 3866368, 8125952, 17038848, 35651584, 74449920, 155191296, 322963456, 671088640, 1392504832, 2885672960, 5972680704, 12348030976, 25501384704
Offset: 0

Views

Author

Paul Curtz, Oct 17 2012

Keywords

Comments

Companion to A218009.
Like any other sequence with a linear recurrence with constant coefficients, this sequence is periodic if read modulo some constant m. These Pisano period lengths for m>=1 are 1, 1, 8, 1, 20, 8, 168, 1, 24, 20, 440, 8, 156, 168, 40, 1, 272, 24, 1368, 20, ... [Curtz's comment reformulated and extended by R. J. Mathar, Oct 23 2012]
Let b(n) = a(n+1)-2*a(n), then b(n+3)-2*b(n+2) = A009545(n+2). - edited by Michel Marcus, Apr 24 2018

Examples

			a(n) and successive differences:
1, 2,  4, 10, 26,  66, 160, 372,  840, 1864, 4096, ...
1, 2,  6, 16, 40,  94, 212, 468, 1024, ...
1, 4, 10, 24, 54, 118, 256, ...
3, 6, 14, 30, 64, ...
3, 8, 16, ...
5, 8, ...
3, ...
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 10, 26, 66]; [n le 6 select I[n] else 6*Self(n-1) - 14*Self(n-2) + 16*Self(n-3) - 8*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 15 2012
    
  • Mathematica
    a[n_] := Sum[ Binomial[n, k]*If[ OddQ[k], k, k/2 + Boole[ Mod[k, 4] == 0]], {k, 0, n}]; Table[ a[n], {n, 0, 31}] (* Jean-François Alcover, Oct 17 2012 *)
    CoefficientList[Series[(1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2 * (1 - 2*x + 2*x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
    LinearRecurrence[{6,-14,16,-8},{1,2,4,10,26,66},40] (* Harvey P. Dale, Aug 14 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2*(1-2*x+2*x^2))) \\ G. C. Greubel, Apr 23 2018

Formula

a(n) = 6*a(n-1) - 14*a(n-2) + 16*a(n-3) - 8*a(n-4) with n > 5.
a(n) = A218009(n) + A146559(n).
G.f.: (1-4*x+6*x^2-2*x^3-2*x^4+2*x^5)/((1-2*x)^2*(1-2*x+2*x^2)). - Bruno Berselli, Oct 22 2012
a(n) = 2^(n-3)*(3*n+2)+((1+i)^n+(1-i)^n)/4, where i=sqrt(-1) and n>1, with a(0)=1, a(1)=2.
Showing 1-1 of 1 results.