cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A218009 Binomial transform of A212831(n).

Original entry on oeis.org

0, 1, 4, 12, 30, 70, 160, 364, 824, 1848, 4096, 8976, 19488, 42016, 90112, 192448, 409472, 868224, 1835008, 3866880, 8126976, 17039872, 35651584, 74447872, 155187200, 322959360, 671088640, 1392513024, 2885689344, 5972697088, 12348030976, 25501351936, 52613316608
Offset: 0

Views

Author

Paul Curtz, Oct 18 2012

Keywords

Comments

Companion to A217988.
Considering a(n+1) - 2*a(n) = 1,2,4,6,10,20,44,96,200,... = b(n), is
b(n+3) - 2*b(n+2) = -2,-2,0,4,8,8,0,-16,-32,-32,0,... = -A009545(n+2).

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4, 12, 30, 70]; [n le 6 select I[n] else 6*Self(n-1) - 14*Self(n-2) + 16*Self(n-3) - 8*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 15 2012
  • Mathematica
    a[n_] := Sum[(1/4)*Binomial[n, k]*((-(1 + (-1)^k))*(-1 + (-1)^Floor[k/2]) - (-3 + (-1)^k)*k), {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 18 2012 *)
    CoefficientList[Series[x*(1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4)/((1 - 2*x)^2*(1 - 2*x + 2*x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)

Formula

G.f.: x*(1-2*x+2*x^2-2*x^3+2*x^4)/((1-2*x)^2*(1-2*x+2*x^2)). - Bruno Berselli, Oct 18 2012
a(n) = 2^(n-3)*(3*n+2)+(1+i)^(n-4)+(1-i)^(n-4), where i=sqrt(-1) and n>1, with a(0)=0, a(1)=1. - Bruno Berselli, Oct 18 2012
a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -8*a(n-4).
Showing 1-1 of 1 results.