cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A231189 Coefficients of the algebraic number 2*sin(2*Pi/n) in the power basis of Q(2*cos(Pi/q(n))), with q(n) = A225975(n), n >= 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, -3, 0, 1, 0, 0, 0, 1, 0, 5, 0, -5, 0, 1, 0, -3, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 0, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, 0, 0, 0, 5, 0, -5, 0, 1, 0, -7, 0, 22, 0, -13, 0, 2, 0, -3, 0, 1, 0, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, 0, 0, 0, -4, 0, 5, 0, -1, 0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1, 0, 0, -1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Dec 04 2013

Keywords

Comments

The relevant trigonometric identity (used in the D. H. Lehmer and I. Niven references, given in A181871) is 2*sin(2*Pi/n) = 2*cos(2*Pi*(1/n -1/4)) = 2*cos(Pi*abs(n-4)/(2*n)) = 2*cos(Pi*p(n)/q(n)), with gcd(p(n), q(n)) = 1 (fraction p(n)/q(n) in lowest terms). One finds p(n) = A106609(n-4), n >=4, with p(1) = 3 , p(2) = 1 = p(3), and q(n) = A225975(n), n >= 1. See the comments on these two A-numbers. Therefore, 2*sin(2*Pi/n) = R(p(n), rho(q(n))), with rho(k) = 2*cos(Pi/k), and the R-polynomials (monic version of Chebyshev's T-polynomials) are given in A127672. It may happen that p(n), the degree of R, is >= delta(q(n)), the degree of the algebraic number rho(q(n)). Here delta(k) = A055034(k) is the degree of the minimal polynomial C(k, x) of rho(k) found under A187360. In this case one can reduce all rho(q(n)) powers >= delta(q(n)) with the help of the equation C(q(n), rho(q(n))) = 0. Thus the final result is 2*sin(2*Pi/n) = R(p(n), x) (mod C(q(n), x)) with x = rho(q(n)). Because R is an integer polynomial this shows that 2*sin(2*Pi/n) is an integer in the algebraic number field Q(rho(q(n))) of degree delta(q(n)).
The power basis of Q(rho(q(n))) is <1, rho(q(n)), ..., rho(q(n))^(delta(q(n))-1)>. Therefore the length of row n of this table is delta(q(n)).
The values n for which mod C(q(n), x) is in operation for the given formula for 2*sin(2*Pi/n) are those for which delta(q(n)) - p(n) <= 0, that is n = 1, 2, 12, 15, 18, 20, 21, 24, 25, 27, 28, 30,...
For the minimal polynomials of 2*sin(2*Pi/n) see the coefficient table A231188.

Examples

			[0], [0], [0, 1], [2], [0, 1, 0, 0], [0, 1], [0, -3, 0, 1, 0, 0], [0, 1], [0, 5, 0, -5, 0, 1], ...
The table a(n,m) begins (the trailing zeros are needed to have the correct degree for Q(rho(q(n)))):
n\m  0   1  2   3  4    5  6    7  8    9  10  11 12  13 14 15 16 17 ...
1:   0
2:   0
3:   0   1
4:   2
5:   0   1  0   0
6:   0   1
7:   0  -3  0   1  0    0
8:   0   1
9:   0   5  0  -5  0    1
10:  0  -3  0   1
11:  0  -7  0  14  0   -7  0    1  0    0
12:  1
13:  0   9  0 -30  0   27  0   -9  0    1   0   0
14:  0   5  0  -5  0    1
15:  0  -7  0  22  0  -13  0    2
16:  0  -3  0   1
17:  0  13  0 -91  0  182  0 -156  0   65   0 -13  0   1  0  0
18:  0  -4  0   5  0   -1
19:  0 -15  0 140  0 -378  0  450  0 -275   0  90  0 -15  0  1  0  0
20: -1   1
...
--------------------------------------------------------------------------
n=1:  2*sin(2*Pi/1) = 0. rho(q(1)) = rho(2) = 2*cos(Pi/2) = 0 and p(1) = 3. R(3, x) = -3*x + x^3 and C(2, x) = x. Therefore R(3, x) (mod C(2, x)) = 0. The degree of C(2, x) is delta(2) = A055034(2) = 1. Here one should use 1 for the undefined  rho(q(1))^0 in order to obtain a(1, 0) = 0.
n=2: 2*sin(2*Pi/2) = 0; rho(q(2)) = rho(2) =  0; p(2) = 1,  R(1, x) = x , C(2, x) = x and delta(2) = 1.  Therefore   R(1, x)  (mod C(1, x)) = 0.   Again, rho(2)^0 is put to 1 here, and a(2, 0) = 0.
n=5: 2*sin(2*Pi/5) = R(1, rho(10)) (mod C(10, rho(10)) =1* rho(10) (the degree of C(10,x) is delta(10) = 4, therefore the mod prescription is not needed).  Therefore, a(5, 0) =0, a(5,1) =1, a(n, m) = 0 for m=2, 3.
n =11: 2*sin(2*Pi/11) = R(7, x) (mod(C(22, x)) with x = rho(22), because p(11) = 7 and q(11) = 22. The degree of C(22, x) is delta(22) = 10, therefore the mod restriction is not needed and R(7, x) = -7*x + 14*x^3 - 7*x^5 + x^7. The coefficients produce the row [0, -7, 0, 14,  0,  -7, 0, 1, 0, 0] with the two trailing zeros needed to obtain the correct row length, namely delta(q(11)) = 10.
		

Crossrefs

Cf. A055034 (for delta), A106609 (for p), A225975 (for q), A127672 (for R), A187360 (for C), A181871, A231188.

Formula

a(n,m) = [x^m] (R(p(n), x) (mod C(q(n), x)), n >= 1, m = 0, 1, ..., delta(q(n)) - 1, where the R and C polynomials are found in A187360 and A127672, respectively. p(n) = A106609(n-4), n >=4, with p(1) = 3 , p(2) = 1 = p(3), and q(n) = A225975(n). Powers of x = rho(q(n)) = 2*cos(Pi/q(n)) appear in the table in increasing order.

A106609 Numerator of n/(n+8).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 2, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 4, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 6, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 8, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

The graph of this sequence is made up of four linear functions: a(n_odd)=n, a(n=2+4i)=n/2, a(4+8i)=n/4, a(8i)=n/8. - Zak Seidov, Oct 30 2006. [In general, f(n) = numerator of n/(n+m) consists of linear functions n/d_i, where d_i are divisors of m (including 1 and m).]
a(n+2), n>=0, is the denominator of the harmonic mean H(n,2) = 4*n/(n+2). a(n+2) = (n+2)/gcd(n+2,8). a(n+5) = A227042(n+2, 2), n >= 0. - Wolfdieter Lang, Jul 04 2013
The sequence p(n) = a(n-4), n>=1, with a(-3) = a(3) = 3, a(-2) = a(2) = 1 and a(-1) = a(1) = 1, appears in the problem of writing 2*sin(2*Pi/n) as an integer in the algebraic number field Q(rho(q(n))), where rho(k) = 2*cos(Pi/k) and q(n) = A225975(n). One has 2*sin(2*Pi/n) = R(p(n), x) modulo C(q(n), x), with x = rho(q(n)) and the integer polynomials R and C given in A127672 and A187360, respectively. See a comment on A225975. - Wolfdieter Lang, Dec 04 2013
A204455(n) divides a(n) for n>=1. - Alexander R. Povolotsky, Apr 06 2015
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019

Crossrefs

Cf. A109049, A204455, A225975, A227042 (second column, starting with a(5)).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+8))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+8)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    a := n -> iquo(n, [8, 1, 2, 1, 4, 1, 2, 1][1 + modp(n, 8)]):
    seq(a(n), n=0..79); # using Wolfdieter Lang's formula, Peter Luschny, Feb 22 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+8)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15},100] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+8))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,8)/8 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = 2*a(n-8) - a(n-16).
G.f.: x* (x^2-x+1) * (x^12 +2*x^11 +4*x^10 +3*x^9 +4*x^8 +4*x^7 +7*x^6 +4*x^5 +4*x^4 +3*x^3 +4*x^2 +2*x +1) / ( (x-1)^2 *(x+1)^2 *(x^2+1)^2 *(x^4+1)^2 ). - R. J. Mathar, Dec 02 2010
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109049(n)/8.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-1/2^(2s)-1/2^(3s)).
Multiplicative with a(2^e) = 2^max(0,e-3). a(p^e) = p^e if p>2. (End)
a(n) = n/gcd(n,8), n >= 0. See the harmonic mean comment above. - Wolfdieter Lang, Jul 04 2013
a(n) = n if n is odd; for n == 0 (mod 8) it is n/8, for n == 2 or 6 (mod 8) it is n/2 and for n == 4 (mod 8) it is n/4. - Wolfdieter Lang, Dec 04 2013
From Peter Bala, Feb 20 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Sum_{n >= 1} (1/n)*a(n)*x^n = G(x) - (1/2)*G(x^2) - (1/4)*G(x^4) - (1/8)*G(x^8), where G(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4)^2*L(x^4) - (1/8)^2*L(x^8), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8). (End)
Sum_{k=1..n} a(k) ~ (43/128) * n^2. - Amiram Eldar, Nov 25 2022

A226008 a(0) = 0; for n>0, a(n) = denominator(1/4 - 4/n^2).

Original entry on oeis.org

0, 4, 4, 36, 1, 100, 36, 196, 16, 324, 100, 484, 9, 676, 196, 900, 64, 1156, 324, 1444, 25, 1764, 484, 2116, 144, 2500, 676, 2916, 49, 3364, 900, 3844, 256, 4356, 1156, 4900, 81, 5476, 1444, 6084, 400, 6724, 1764, 7396, 121, 8100
Offset: 0

Views

Author

Paul Curtz, May 22 2013

Keywords

Comments

Numerators are in A225948.
Repeated terms of A016826 are in the positions 1, 2, 3, 6, 5, 10, ... (A043547).

Examples

			a(0) = (-1+1)^2 = 0, a(1) = (-3+5)^2 = 4, a(2) = (-1+3)^2 = 4.
		

Crossrefs

Cf. A225975 (associated square roots).

Programs

  • Magma
    [0] cat [Denominator(1/4-4/n^2): n in [1..50]]; // Bruno Berselli, May 23 2013
  • Mathematica
    Join[{0},Table[Denominator[1/4 - 4/n^2], {n, 49}]] (* Alonso del Arte, May 22 2013 *)

Formula

a(n) = 3*a(n-8) -3*a(n-16) +a(n-24).
a(8n) = A016802(n), a(8n+4) = A016754(n).
a(4n) = A154615(n).
a(4n+1) = A017090(n).
a(4n+2) = a(2n+1) = A016826(n); a(2n) = A061038(n).
a(4n+3) = A017138(n).
From Bruno Berselli, May 23 2013: (Start)
G.f.: x*(4 +4*x +36*x^2 +x^3 +100*x^4 +36*x^5 +196*x^6 +16*x^7 +312*x^8 +88*x^9 +376*x^10 +6*x^11 +376*x^12 +88*x^13 +312*x^14 +16*x^15 +196*x^16 +36*x^17 +100*x^18 +x^19 +36*x^20 +4*x^21 +4*x^22)/(1-x^8)^3.
a(n) = n^2*(6*cos(3*Pi*n/4)+6*cos(Pi*n/4)-54*cos(Pi*n/2)-219*(-1)^n+293)/128.
a(n+9) = a(n+1)*((n+9)/(n+1))^2. (End)
Sum_{n>=1} 1/a(n) = 19*Pi^2/96. - Amiram Eldar, Aug 14 2022

Extensions

Edited by Bruno Berselli, May 23 2013

A231190 Numerator of abs(n-8)/(2*n), n >= 1.

Original entry on oeis.org

7, 3, 5, 1, 3, 1, 1, 0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 4, 65, 33, 67, 17
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

Because 2*sin(Pi*4/n) = 2*cos(Pi*abs(n-8)/(2*n)) = 2*cos(Pi*a(n)/b(n)) with gcd(a(n),b(n)) = 1, one has
2*sin(Pi*4/n) = R(a(n), x) (mod C(b(n), x)), with x = 2*cos(Pi/b(n)) =: rho(b(n)). The integer Chebyshev R and C polynomials are found in A127672 and A187360, respectively.
b(n) = A232625(n). This shows that 2*sin(Pi*4/n) is an integer in the algebraic number field Q(rho(b(n))) of degree delta(b(n)), with delta(k) = A055034(k). This degree delta(b(n)) is given in A231193(n), and if gcd(n,2) = 1 it coincides with the one for sin(2*Pi/n) given by A093819(n). See Theorem 3.9 of the I. Niven reference, pp. 37-38, which uses gcd(k, n) = 1. See also the Jan 09 2011 comment on A093819.
a(n) and b(n) = A232625(n) are the k=2 members of a family of pair of sequences p(k,n) and q(k,n), n >= 1, k >= 1, relevant to determine the algebraic degree of 2*sin(Pi*2*k/n) from the trigonometric identity (used in the D. H. Lehmer and I. Niven references) 2*sin(Pi*2*k/n) = 2*cos(Pi*abs(n-4*k)/(2*n)) = 2*cos(Pi*p(k,n)/q(k,n)). This is R(p(k,n), x) (mod C(q(k,n), x)), with x = 2*cos(Pi/q(k,n)) =: rho(q(k,n)). The polynomials R and C have been used above. C(q(k,n), x) is the minimal polynomial of rho(q(k,n)) with degree delta(q(k,n)), which is then the degree, call it deg(k,n), of the integer 2*sin(Pi*2*k/n) in the number field Q(rho(q(k,n))). From Theorem 3.9 of the I. Niven reference deg(k,n) is, for given k, for those n with gcd(k, n) = 1 determined by A093819(n). In general deg(k,n) = A093819(n/gcd(k,n)). For the k=1 instance p(1,n) and q(1,n) see comments on A106609 and A225975.

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Cf. A127672 (R), A187360 (C), A232625 (b), A055034 (delta), A093819 (degree if k=1), A232626(degree if k=2), A106609 (k=1, p), A225975 (k=1, q), A106617.

Programs

  • Maple
    f:= n -> numer(abs(n-8)/(2*n)):
    map(f, [$1..100]); # Robert Israel, Dec 06 2018
  • Mathematica
    a[n_] := Numerator[Abs[n-8]/(2n)]; Array[a, 50] (* Amiram Eldar, Dec 06 2018 *)

Formula

a(n) = numerator(abs(n-8)/(2*n)), n >= 1.
a(n) = abs(n-8)/gcd(n-8, 16).
a(n) = abs(n-8) if n is odd; if n is even then a(n) = abs(n-8)/2 if n/2 == 1, 3, 5, 7 (mod 8), a(n) = abs(n-8)/4 if n/2 == 2, 6 (mod 8), a(n) = abs(n-8)/8 if n/2 == 0 (mod 8) and a(n) = abs(n-8)/16 if n == 4 (mod 8).
O.g.f.: 1+ x*(7 + 3*x + 5*x^2 + 1*x^3 + 3*x^4 + 1*x^5 + 1*x^6) + N(x)/(1-x^16)^2 , with N(x) = x^9*((1+x^30) + x*(1+x^28) + 3*x^2*(1+x^26) + x^3*(1+x^24) + 5*x^4*(1+x^22) + 3*x^5*(1+x^20) + 7*x^6*(1+x^18) + x^7*(1+x^16) + 9*x^8*(1+x^14) + 5*x^9*(1+x^12) + 11*x^10*(1+x^10) + 3*x^11*(1+x^8) + 13*x^12*(1+x^6) + 7*x^13*(1+x^4) + 15*x^14*(1+x^2)+x^15).
a(n+32)-2*a(n+16)+a(n) = 0 for n >= 8.
a(n+8) = A106617(n). - Peter Bala, Feb 28 2019

A232625 Denominators of abs(n-8)/(2*n), n >= 1.

Original entry on oeis.org

2, 2, 6, 2, 10, 6, 14, 1, 18, 10, 22, 6, 26, 14, 30, 4, 34, 18, 38, 10, 42, 22, 46, 3, 50, 26, 54, 14, 58, 30, 62, 8, 66, 34, 70, 18, 74, 38, 78, 5, 82, 42, 86, 22, 90, 46, 94, 12, 98, 50, 102, 26, 106, 54, 110, 7, 114, 58, 118, 30, 122, 62, 126, 16, 130, 66
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

The numerators are given in A231190. See the comments there on 2*sin(Pi*4/n).
2*sin(Pi*4/n) = R(b(n), x) (mod C(b(n), x)), with x = 2*cos(Pi/a(n)) =: rho(a(n)). The integer Chebyshev R and C polynomials are found in A127672 and A187360, respectively. b(n) = A231190(n).
delta(a(n)) = deg(2,n), with delta(k) = A055034(k), is the degree of the algebraic number 2*sin(Pi*4/n) given in A232626.

Crossrefs

Cf. A127672 (R), A187360 (C), A231190 (b), A055034 (delta), A232626 (degree k=2), A106609 (k=1, p), A225975 (k=1, q), A093819 (degree k=1).

Programs

  • Mathematica
    a[n_] := Denominator[(n-8)/(2*n)]; Array[a, 100] (* Amiram Eldar, Nov 09 2024 *)
  • PARI
    a(n) = denominator((n-8)/(2*n)); \\ Amiram Eldar, Nov 09 2024

Formula

a(n) = denominator(abs(n-8)/(2*n)), n >= 1.
a(n) = 2*n/gcd(n-8, 16).
a(n) = 2*n if n is odd; if n is even then a(n) = n if n/2 == 1, 3, 5, 7 (mod 8), a(n) = n/2 if n/2 == 2, 6 (mod 8), a(n) == n/4 if n/2 == 0 (mod 8) and a(n) = n/8 if n == 4 (mod 8).
O.g.f.: x*(2*(1+x^30) + 2*x*(1+x^28) + 6*x^2*(1+x^26) + 2*x^3*(1+x^24) + 10*x^4*(1+x^22) + 6*x^5*(1+x^20) + 14*x^6*(1+x^18) + x^7*(1+x^16) + 18*x^8*(1+x^14) + 10*x^9*(1+x^12) + 22*x^10*(1+x^10) + 6*x^11*(1+x^8) + 26*x^12*(1+x^6) + 14*x^13*(1+x^4) + 30*x^14*(1+x^2) + 4*x^15)/(1-x^16)^2.
Sum_{k=1..n} a(k) ~ (171/256) * n^2. - Amiram Eldar, Nov 09 2024
Showing 1-5 of 5 results.