A231189 Coefficients of the algebraic number 2*sin(2*Pi/n) in the power basis of Q(2*cos(Pi/q(n))), with q(n) = A225975(n), n >= 1.
0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, -3, 0, 1, 0, 0, 0, 1, 0, 5, 0, -5, 0, 1, 0, -3, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 0, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, 0, 0, 0, 5, 0, -5, 0, 1, 0, -7, 0, 22, 0, -13, 0, 2, 0, -3, 0, 1, 0, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, 0, 0, 0, -4, 0, 5, 0, -1, 0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1, 0, 0, -1, 1
Offset: 1
Examples
[0], [0], [0, 1], [2], [0, 1, 0, 0], [0, 1], [0, -3, 0, 1, 0, 0], [0, 1], [0, 5, 0, -5, 0, 1], ... The table a(n,m) begins (the trailing zeros are needed to have the correct degree for Q(rho(q(n)))): n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... 1: 0 2: 0 3: 0 1 4: 2 5: 0 1 0 0 6: 0 1 7: 0 -3 0 1 0 0 8: 0 1 9: 0 5 0 -5 0 1 10: 0 -3 0 1 11: 0 -7 0 14 0 -7 0 1 0 0 12: 1 13: 0 9 0 -30 0 27 0 -9 0 1 0 0 14: 0 5 0 -5 0 1 15: 0 -7 0 22 0 -13 0 2 16: 0 -3 0 1 17: 0 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 0 0 18: 0 -4 0 5 0 -1 19: 0 -15 0 140 0 -378 0 450 0 -275 0 90 0 -15 0 1 0 0 20: -1 1 ... -------------------------------------------------------------------------- n=1: 2*sin(2*Pi/1) = 0. rho(q(1)) = rho(2) = 2*cos(Pi/2) = 0 and p(1) = 3. R(3, x) = -3*x + x^3 and C(2, x) = x. Therefore R(3, x) (mod C(2, x)) = 0. The degree of C(2, x) is delta(2) = A055034(2) = 1. Here one should use 1 for the undefined rho(q(1))^0 in order to obtain a(1, 0) = 0. n=2: 2*sin(2*Pi/2) = 0; rho(q(2)) = rho(2) = 0; p(2) = 1, R(1, x) = x , C(2, x) = x and delta(2) = 1. Therefore R(1, x) (mod C(1, x)) = 0. Again, rho(2)^0 is put to 1 here, and a(2, 0) = 0. n=5: 2*sin(2*Pi/5) = R(1, rho(10)) (mod C(10, rho(10)) =1* rho(10) (the degree of C(10,x) is delta(10) = 4, therefore the mod prescription is not needed). Therefore, a(5, 0) =0, a(5,1) =1, a(n, m) = 0 for m=2, 3. n =11: 2*sin(2*Pi/11) = R(7, x) (mod(C(22, x)) with x = rho(22), because p(11) = 7 and q(11) = 22. The degree of C(22, x) is delta(22) = 10, therefore the mod restriction is not needed and R(7, x) = -7*x + 14*x^3 - 7*x^5 + x^7. The coefficients produce the row [0, -7, 0, 14, 0, -7, 0, 1, 0, 0] with the two trailing zeros needed to obtain the correct row length, namely delta(q(11)) = 10.
Crossrefs
Formula
a(n,m) = [x^m] (R(p(n), x) (mod C(q(n), x)), n >= 1, m = 0, 1, ..., delta(q(n)) - 1, where the R and C polynomials are found in A187360 and A127672, respectively. p(n) = A106609(n-4), n >=4, with p(1) = 3 , p(2) = 1 = p(3), and q(n) = A225975(n). Powers of x = rho(q(n)) = 2*cos(Pi/q(n)) appear in the table in increasing order.
Comments