cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106839 Numbers congruent to 11 mod 16.

Original entry on oeis.org

11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 587, 603, 619, 635, 651, 667, 683, 699, 715, 731, 747, 763, 779, 795, 811, 827, 843
Offset: 0

Views

Author

Ralf Stephan, May 03 2005

Keywords

Crossrefs

Differs from A044072.

Programs

Formula

G.f.: x*(11+5*x)/(x-1)^2. - R. J. Mathar, Oct 08 2011
From Vincenzo Librandi, Oct 10 2011: (Start)
a(n) = 11 + 16*n.
a(n) = 32*n - a(n-1) + 6, a(0)=11. (End)
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(11 + 16*x).
a(n) = 2*a(n-1) - a(n-2).
a(n) = A017101(2*n+1). (End)

A044453 Numbers k such that string 2,3 occurs in the base 4 representation of k but not of k+1.

Original entry on oeis.org

11, 27, 47, 59, 75, 91, 111, 123, 139, 155, 191, 203, 219, 239, 251, 267, 283, 303, 315, 331, 347, 367, 379, 395, 411, 447, 459, 475, 495, 507, 523, 539, 559, 571, 587, 603, 623, 635, 651, 667, 767, 779, 795, 815, 827, 843, 859, 879, 891, 907, 923, 959, 971
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A044072.

Programs

  • Python
    from sympy.ntheory.factor_ import digits
    def has23(n): return "23" in "".join(map(str, digits(n, 4)[1:]))
    def ok(n): return has23(n) and not has23(n+1)
    print([k for k in range(972) if ok(k)]) # Michael S. Branicky, Nov 27 2021

Extensions

a(48) and beyond from Michael S. Branicky, Nov 27 2021
Showing 1-2 of 2 results.