A051062
a(n) = 16*n + 8.
Original entry on oeis.org
8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0
- Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.
- Mia Boudreau, Table of n, a(n) for n = 0..10000
- Mihaly Bencze, Problem 11508, The American Mathematical Monthly, Vol. 117, N° 5, May 2010, p. 459.
- Milan Janjić, Two Enumerative Functions. [Wayback Machine link]
- Tanya Khovanova, Recursive Sequences.
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N)).
- William A. Stein, The modular forms database.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
-
[16*n+8: n in [0..50]]; // Wesley Ivan Hurt, Jun 01 2014
-
A051062:=n->16*n+8; seq(A051062(n), n=0..50); # Wesley Ivan Hurt, Jun 01 2014
-
Range[8, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
Table[16n+8, {n,0,50}] (* Wesley Ivan Hurt, Jun 01 2014 *)
LinearRecurrence[{2,-1},{8,24},60] (* or *) NestList[#+16&,8,60] (* Harvey P. Dale, Aug 18 2019 *)
-
a(n)=16*n+8 \\ Charles R Greathouse IV, May 09 2016
A082285
a(n) = 16*n + 13.
Original entry on oeis.org
13, 29, 45, 61, 77, 93, 109, 125, 141, 157, 173, 189, 205, 221, 237, 253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, 573, 589, 605, 621, 637, 653, 669, 685, 701, 717, 733, 749, 765, 781, 797, 813, 829, 845
Offset: 0
-
[[ n : n in [1..1000] | n mod 16 eq 13]]; // Vincenzo Librandi, Oct 10 2011
-
Range[13, 1000, 16] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
LinearRecurrence[{2,-1},{13,29},60] (* Harvey P. Dale, Jan 28 2023 *)
-
\\ solutions to 7^x+11^x == 13 mod 17
anpbn(n) = { for(x=1,n, if((7^x+11^x-13)%17==0,print1(x" "))) }
A044072
Numbers k such that string 2,3 occurs in the base 4 representation of k but not of k-1.
Original entry on oeis.org
11, 27, 43, 59, 75, 91, 107, 123, 139, 155, 171, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 459, 475, 491, 507, 523, 539, 555, 571, 587, 603, 619, 635, 651, 667, 683, 779, 795, 811, 827, 843, 859, 875, 891, 907, 923, 939, 971
Offset: 1
-
Flatten[Position[Partition[Table[If[MemberQ[Partition[IntegerDigits[n, 4], 2, 1], {2, 3}], 1, 0], {n, 1000}], 2, 1], {0, 1}]] + 1 (* Vincenzo Librandi, Aug 19 2015 *)
-
from sympy.ntheory.factor_ import digits
def has23(n): return "23" in "".join(map(str, digits(n, 4)[1:]))
def ok(n): return has23(n) and not has23(n-1)
print([k for k in range(972) if ok(k)]) # Michael S. Branicky, Nov 27 2021
A292608
a(n) = 2*n + 1 + valuation(n, 2) with valuation(n, 2) = A007814(n).
Original entry on oeis.org
3, 6, 7, 11, 11, 14, 15, 20, 19, 22, 23, 27, 27, 30, 31, 37, 35, 38, 39, 43, 43, 46, 47, 52, 51, 54, 55, 59, 59, 62, 63, 70, 67, 70, 71, 75, 75, 78, 79, 84, 83, 86, 87, 91, 91, 94, 95, 101, 99, 102, 103, 107, 107, 110, 111, 116, 115, 118, 119, 123, 123, 126
Offset: 1
-
a := n -> 2*n + 1 + padic:-ordp(n, 2): seq(a(n), n=1..62);
-
a[n_] := 2n + 1 + IntegerExponent[n, 2]; Array[a, 62]
-
a(n) = 2*n+1+valuation(n, 2); \\ Michel Marcus, Sep 25 2017
A367882
Table T(n, k) read by downward antidiagonals: T(n, k) = floor((4*T(n, k-1)+3)/3) starting with T(n, 0) = 4*n.
Original entry on oeis.org
0, 1, 4, 2, 6, 8, 3, 9, 11, 12, 5, 13, 15, 17, 16, 7, 18, 21, 23, 22, 20, 10, 25, 29, 31, 30, 27, 24, 14, 34, 39, 42, 41, 37, 33, 28, 19, 46, 53, 57, 55, 50, 45, 38, 32, 26, 62, 71, 77, 74, 67, 61, 51, 43, 36, 35, 83, 95, 103, 99, 90, 82, 69, 58, 49, 40
Offset: 0
Square array starts:
0, 1, 2, 3, 5, 7, ...
4, 6, 9, 13, 18, 25, ...
8, 11, 15, 21, 29, 39, ...
12, 17, 23, 31, 42, 57, ...
16, 22, 30, 41, 55, 74, ...
...
-
A367882[n_, k_] := A367882[n, k] = If[k == 0, 4*n, Floor[4*A367882[n, k-1]/3 + 1]];
Table[A367882[k, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 03 2024 *)
-
T(n, k) = if(k==0, 4*n, (4*T(n, k-1)+3)\3) \\ Thomas Scheuerle, Dec 04 2023
A360033
Table T(n,k), n >= 1 and k >= 0, read by antidiagonals, related to Jacobsthal numbers A001045.
Original entry on oeis.org
1, 2, 1, 3, 3, 3, 4, 5, 7, 5, 5, 7, 11, 13, 11, 6, 9, 15, 21, 27, 21, 7, 11, 19, 29, 43, 53, 43, 8, 13, 23, 37, 59, 85, 107, 85, 9, 15, 27, 45, 75, 117, 171, 213, 171, 10, 17, 31, 53, 91, 149, 235, 341, 427, 341, 11, 19, 35, 61, 107, 181, 299, 469
Offset: 1
The array T(n,k), for n <= 1 and k >= 0, begins:
n = 1: 1, 1, 3, 5, 11, 21, 43, ... -> A001045(k+1)
n = 2: 2, 3, 7, 13, 27, 53, 107, ... -> A048573(k)
n = 3: 3, 5, 11, 21, 43, 85, 171, ... -> A001045(k+3)
n = 4: 4, 7, 15, 29, 59, 117, 235, ... -> ?
n = 5: 5, 9, 19, 37, 75, 149, 299, ... -> A062092(k+1)
n = 6: 6, 11, 23, 45, 91, 181, 363, ... -> ?
n = 7: 7, 13, 27, 53, 107, 213, 427, ... -> A048573(k+2)
Showing 1-6 of 6 results.
Comments