cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045309 Primes congruent to {0, 2} mod 3.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
Offset: 1

Views

Author

Keywords

Comments

Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001
2, 3 and primes congruent to 5 mod 6. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009
    
  • Mathematica
    Select[Prime[Range[150]],MemberQ[{0,2},Mod[#,3]]&] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    is(n)=isprime(n) && n%3!=1 \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A045309_gen(): # generator of terms
        yield from (2,3)
        yield from filter(isprime, count(5,6))
    A045309_list = list(islice(A045309_gen(),48)) # Chai Wah Wu, Apr 28 2025

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Apr 20 2015

Extensions

Edited by N. J. A. Sloane, Apr 11 2009