cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A014137 Partial sums of Catalan numbers (A000108).

Original entry on oeis.org

1, 2, 4, 9, 23, 65, 197, 626, 2056, 6918, 23714, 82500, 290512, 1033412, 3707852, 13402697, 48760367, 178405157, 656043857, 2423307047, 8987427467, 33453694487, 124936258127, 467995871777, 1757900019101, 6619846420553, 24987199492705, 94520750408709, 358268702159069
Offset: 0

Views

Author

Keywords

Comments

This is also the result of applying the transformation on generating functions A -> 1/((1 - x)*(1 - x*A)) to the g.f. for the Catalan numbers.
p divides a(p) - 3 for prime p = 3 and p = {7, 13, 19, 31, 37, 43, ...} = A002476 (Primes of the form 6*n + 1). p^2 divides a(p^2) - 3 for prime p > 3. - Alexander Adamchuk, Jul 11 2006
Prime p divides a(p) for p = {2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, ...} = A045309 (Primes congruent to {0, 2} mod 3); and A045309 (Primes p such that x^3 = n (integer) has only one solution mod p). Nonprime numbers n such that n divides a(n) are listed in A128287 = {1, 8, 133, ...}. - Alexander Adamchuk, Feb 23 2007
For p prime >= 5, a(p-1) = 1 or -2 (mod p) according as p = 1 or -1 (mod 3) (see Pan and Sun link). For example, with p=5, a(p-1) = 23 = -2 (mod p). - David Callan, Nov 29 2007
Hankel transform is A010892(n+1). - Paul Barry, Apr 24 2009
Equals INVERTi transform of A000245: (1, 3, 9, 28, ...). - Gary W. Adamson, May 15 2009
The subsequence of prime partial sums of Catalan numbers begins: a(1) = 2, a(4) = 23, a(6) = 197, a(16) = 48760367; see A121852. - Jonathan Vos Post, Feb 10 2010
Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k >= 1 including two kinds of (1,1). - Alois P. Heinz, Oct 14 2015
Binomial transform of A086246(n+1) = [1, 1, 1, 2, 4, 9, ...], or, equivalently, of A001006 (Motzkin numbers) with 1 prepended.

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 65*x^5 + 197*x^6 + 626*x^7 + 2056*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(&+[Catalan(k): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Jun 30 2024
  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          ((5*n-1)*a(n-1)-(4*n-2)*a(n-2))/(n+1))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 18 2013
    A014137List := proc(m) local A, P, n; A := [1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-n]]);
    A := [op(A), P[-1]] od; A end: A014137List(30); # Peter Luschny, Mar 26 2022
  • Mathematica
    Table[Sum[(2k)!/(k!)^2/(k+1),{k,0,n}],{n,0,30}] (* Alexander Adamchuk, Jul 11 2006 *)
    Accumulate[CatalanNumber[Range[0,30]]] (* Harvey P. Dale, May 08 2012 *)
    a[ n_] := SeriesCoefficient[ (1 - (1 - 4 x)^(1/2)) / (2 x (1 - x)), {x, 0, n}]; (* Michael Somos, Oct 24 2015 *)
    Table[(1 + CatalanNumber[n] (3 (n + 1) Hypergeometric2F1[1, -n, 1/2 - n, 1/4] - 4 n - 2))/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
  • PARI
    Vec((1-(1-4*x)^(1/2))/(2*x*(1-x))+O(x^99)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    sm(v)={my(s=vector(#v)); s[1]=v[1]; for(n=2, #v, s[n]=v[n]+s[n-1]); s; }
    C(n)=binomial(2*n, n)/(n+1);
    sm(vector(66, n, C(n-1)))
    /* Joerg Arndt, May 04 2013 */
    
  • Python
    from _future_ import division
    A014137_list, b, s = [], 1, 0
    for n in range(10**2):
        s += b
        A014137_list.append(s)
        b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 28 2016
    
  • Sage
    def A014137():
        f, c, n = 1, 1, 1
        while True:
            yield f
            n += 1
            c = c * (4*n - 6) // n
            f = c + f
    a = A014137()
    print([next(a) for  in range(29)]) # _Peter Luschny, Nov 30 2016
    

Formula

a(n) = A014138(n-1) + 1.
G.f.: (1 - (1 - 4*x)^(1/2))/(2*x*(1 - x)).
a(n) = Sum_{k=0..n} (2k)!/(k!)^2/(k+1). - Alexander Adamchuk, Jul 11 2006
D-finite with recurrence: (n+1)*a(n) + (1-5*n)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 14 2011
Mathar's formula reduces to 2*(2*n-1)*C(n-1) = (n+1)*C(n), which is a known recurrence of the Catalan numbers, so the conjecture is true. - Peter J. Taylor, Mar 23 2015
Let C(n+1) = binomial(2*n+2,n+1)/(n+2) and H(n) = hypergeometric([1,n+3/2],[n+3],4) then A014137(n) = -(-1)^(2/3) - C(n+1)*H(n) and A014138(n) = -I^(2/3) - C(n+1)*H(n). - Peter Luschny, Aug 09 2012
G.f. (conjecture): Q(0)/(1-x), where Q(k)= 1 + (4*k + 1)*x/(k + 1 - 2*x*(k + 1)*(4*k + 3)/(2*x*(4*k + 3) + (2*k + 3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) ~ 2^(2*n + 2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 10 2013
0 = a(n)*(16*a(n+1) - 26*a(n+2) + 10*a(n+3)) + a(n+1)*(-14*a(n+1) + 23*a(n+2) - 11*a(n+3)) + a(n+2)*(a(n+2) + a(n+3)) if n >= 0. - Michael Somos, Oct 24 2015
a(n) = (1 + A000108(n)*(3*(n+1)*hypergeom([1,-n], [1/2-n], 1/4) - 4*n - 2))/2. - Vladimir Reshetnikov, Oct 03 2016
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x) * A(x)^2. - Ilya Gutkovskiy, Jul 25 2021
From Peter Luschny, Nov 16 2022: (Start)
a(n) = C(n)*hypergeom([1, -n - 1], [1/2 - n], 1/4) + 1/2.
a(n) = A358436(n) / C(n). (End)
E.g.f.: exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)/2*(3*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx + 1). - Mélika Tebni, Sep 01 2024

A014752 Primes of the form x^2 + 27y^2.

Original entry on oeis.org

31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1723, 1753, 1777, 1789, 1801, 1831, 1933, 1999, 2017
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Primes p == 1 (mod 3) such that 2 is a cubic residue mod p.
Primes p == 1 (mod 6) such that 2 and -2 are both cubes (one implies the other) mod p. - Warren D. Smith
Subsequence of A040028, complement of A045309 relative to A040028. For p in this sequence, x^3 == 2 (mod p) has three solutions in integers from 0 to p-1, whose sum is p (A059899) or 2*p (A059914). The solutions are given in A060122, A060123 and A060124. - Klaus Brockhaus, Mar 02 2001
Primes p = 3m+1 such that 2^m == 1 (mod p). Subsequence of A016108 which also includes composites satisfying this congruence. - Alzhekeyev Ascar M, Feb 22 2012

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, Prop. 9.6.2, p. 119.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | NormEquation(27, p) eq true]; // Vincenzo Librandi, Jul 24 2016
  • Mathematica
    With[{nn=50},Take[Select[Union[First[#]^2+27Last[#]^2&/@Tuples[Range[ nn], 2]],PrimeQ],nn]] (* Harvey P. Dale, Jul 28 2014 *)
    nn = 1398781;re = Sort[Reap[Do[Do[If[PrimeQ[p = x^2 + 27*y^2], Sow[{p, x, y}]], {x, Sqrt[nn - 27*y^2]}], {y, Sqrt[nn/27]}]][[2, 1]]]; (* For all 17753 values of a(n), x(n) and y(n). - Zak Seidov, May 20 2016 *)
  • PARI
    { fc(a,b,c,M) = my(p,t1,t2,n); t1 = listcreate();
    for(n=1,M, p = prime(n);
    t2 = qfbsolve(Qfb(a,b,c),p); if(t2 == 0,, listput(t1,p)));
    print(t1);
    }
    fc(1,0,27,1000);
    \\ N. J. A. Sloane, Jun 06 2014
    
  • PARI
    list(lim)=my(v=List()); forprimestep(p=31,lim,6, if(Mod(2,p)^(p\3)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Apr 06 2022
    

Formula

a(n) ~ 6n log n by the Landau prime ideal theorem. - Charles R Greathouse IV, Apr 06 2022

Extensions

Definition provided by T. D. Noe, May 08 2005
Entry revised by Michael Somos and N. J. A. Sloane, Jul 28 2006
Defective Mma program replaced with PARI program, b-file recomputed and extended by N. J. A. Sloane, Jun 06 2014

A167134 Primes congruent to {2, 3, 5, 7} mod 11.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 47, 71, 73, 79, 101, 113, 137, 139, 157, 167, 179, 181, 211, 223, 227, 233, 269, 271, 277, 293, 311, 313, 337, 359, 379, 401, 409, 421, 431, 443, 467, 487, 491, 509, 541, 557, 563, 577, 599, 601, 607, 619, 641, 643, 673, 709, 733, 739, 751
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 11 is prime.
Primes of the form 11*n+r where n >= 0 and r is in {2, 3, 5, 7}.
2 and primes congruent to {3, 5, 7, 13} mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 11 in {2, 3, 5, 7} ];
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 11] | exists(u){ r: r in {2, 3, 5,7} | p eq (11*n+r) } } ];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{2, 3, 5, 7},Mod[#,11]]&] (* Vincenzo Librandi, Aug 05 2012 *)

A167135 Primes congruent to {2, 3, 5, 7, 11} mod 12.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 353, 359
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 12 is prime.
Primes of the form 12*n+r where n >= 0 and r is in {2, 3, 5, 7, 11}.
Except for the prime 2, these are the primes that are encountered in the set of numbers {x, f(f(x))} where x is of the form 4k+3 with k>=0, and where f(x) is the 3x+1-problem function, and f(f(x)) the second iteration value. Indeed this sequence is the set union of 2 and A002145 (4k+3 primes) and A007528 (6k+5 primes), since f(f(4k+3))=6k+5. Equivalently one does not get any prime from A068228 (the complement of the present sequence). - Michel Marcus and Bill McEachen, May 07 2016

Crossrefs

Subsequences: A002145, A007528. Complement: A068228.
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 12 in {2, 3, 5, 7, 11} ];
    
  • Magma
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 12] | exists(u){ r: r in {2, 3, 5,7, 11} | p eq (12*n+r) } } ];
  • Maple
    isA167135  := n -> isprime(n) and not modp(n, 12) != 1:
    select(isA167135, [$1..360]); # Peter Luschny, Mar 28 2018
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{2,3, 5, 7, 11},Mod[#,12]]&] (* Vincenzo Librandi, Aug 05 2012 *)
    Select[Prime[Range[72]], Mod[#, 12] != 1 &] (* Peter Luschny, Mar 28 2018 *)

A060121 First solution mod p of x^3 = 2 for primes p such that only one solution exists.

Original entry on oeis.org

0, 2, 3, 7, 8, 16, 26, 5, 21, 18, 38, 49, 50, 16, 26, 6, 81, 54, 98, 70, 157, 161, 58, 147, 21, 86, 92, 197, 50, 249, 137, 184, 119, 45, 45, 261, 198, 61, 176, 143, 51, 103, 221, 72, 11, 219, 35, 86, 385, 384, 141, 143, 225, 92, 245, 533, 557, 473, 170, 375, 516
Offset: 1

Views

Author

Klaus Brockhaus, Mar 02 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. For i > 1, i is a solution mod p of x^3 = 2 iff p is a prime factor of i^3-2 and p > i (cf. comment to A059940). i^3-2 has at most two prime factors > i. Hence i is a solution mod p of x^3 = 2 for at most two different p and therefore no integer occurs more than twice in this sequence. There are integers which do occur twice, e.g. 16, 21, 26 (cf. A060914). Moreover, no integer occurs more than twice in A060121, A060122, A060123 and A060124 taken together.

Examples

			a(9) = 21, since 47 is the ninth term of A045309 and 21 is the only solution mod 47 of x^3 = 2.
		

Crossrefs

Programs

  • Maple
    Res:=0,2: count:= 2: p:= 3:
    while count < 100 do
    p:= nextprime(p);
       if p mod 3 = 2 then
        count:= count+1;
        Res:= Res, numtheory:-mroot(2,3,p);
    fi
    od:
    Res; # Robert Israel, Sep 12 2018
  • Mathematica
    terms = 100;
    A045309 = Select[Prime[Range[2 terms]], Mod[#, 3] != 1&];
    a[n_] := PowerMod[2, 1/3, A045309[[n]]];
    Array[a, terms] (* Jean-François Alcover, Feb 27 2019 *)

Formula

a(n) = first (only) solution mod p of x^3 = 2, where p is the n-th prime such that x^3 = 2 has only one solution mod p, i.e. p is the n-th term of A045309.

A272198 The p-defect p - N(p) of the congruence y^2 == x^3 + 1 (mod p) for primes p, where N(p) is the number of solutions given by A272197(n).

Original entry on oeis.org

0, 0, 0, -4, 0, 2, 0, 8, 0, 0, -4, -10, 0, 8, 0, 0, 0, 14, -16, 0, -10, -4, 0, 0, 14, 0, 20, 0, 2, 0, 20, 0, 0, -16, 0, -4, 14, 8, 0, 0, 0, 26, 0, 2, 0, -28, -16, -28, 0, -22, 0, 0, 14, 0, 0, 0, 0, -28, 26, 0
Offset: 1

Views

Author

Wolfdieter Lang, May 02 2016

Keywords

Comments

This sequence for an elliptic curve (of the Bachet-Mordell type) is discussed in the Silverman reference. In Exercise 45.5, in the table on p. 405, the p-defects are called a_p, and are shown for primes 2 to 113.
The modularity pattern series is the expansion of the 51st modular cusp form of weight 2 and level N=36, given in the table I of the Martin reference, i.e., eta^4(6*z) in powers of q = exp(2*Pi*i*z), with Im(z) > 0. Here eta is the Dedekind function. See A000727 for the expansion in powers of q^6 (after deleting a factor q^(1/6)). Note that also for the possibly bad prime 2 and the bad prime 3 this expansion gives the correct numbers 0 (the discriminant of this elliptic curve is -3^3).
See also the comment on the Martin-Ono reference in A272197 which implies that eta^4(6*z) provides the modularity sequence for this elliptic curve.
For primes p == 0 and 2 (mod 3) (A045309) a(p) = 0. The proof runs along the same line as the one given in the Silverstein reference on pp. 400 - 402 for 17 replaced by 1. From the expansion of the known modularity function eta^4(6*z) follows that only the coefficients for powers q^n with n == 1 (mod 6) are nonzero, and therefore all a(p) for primes p == 0 and 2 (mod 3) have to vanish.
If prime(n) == 1 (mod 3) = A002476(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + 3*B(m)^2 with A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. In this case (4*prime(n) - a(n)^2)/12, seems to be a square, q(m)^2. In fact is seems that (the positive) q(m) = B(m). This is true at least for the first 80 primes 1 (mod 3), i.e. for such primes <= 997. (In the Silverman reference, in hint c) for Exercise 4.5, on p. 405, a more complicated way is suggested: 4*p is decomposed there non-uniquely instead of p uniquely.) If this conjecture is true then a(n) = 2*(+/-sqrt(prime(n) - 3*B(m)^2)) = +- 2*A(m) for prime(n) = A002476(m). This leads to a bisection of the primes 1 (mod 3) into two types: type I if the + sign applies, and type II for the - sign. Primes of type I are given in A272200: 13, 19, 43, 61, 97, ... and those of type II in A272201: 7, 31, 37, 67, 73, ...

Examples

			a(1) = 2 - A272197(1) = 0, and 2 == 2(mod 3).
a(4) = 7 - A272197(4) = 7 - 11 = -4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272201(1), hence a(4) = -2*2 = -4.
a(6) = 13 - A272197(6) = 13 - 11 = 2, and 13 = A002476(2) = 1^2 + 3*2^2; 1 = A001479(2+1), 13 = A272200(1), hence a(6) = +2*1 = +2.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).

Crossrefs

Formula

a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272197(n), the number of solutions of the congruence y^2 == x^3 + 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is true because Mordell proved the Ramanujan conjecture on the expansion coefficients of eta^4(6*z), and with the present a(n) the result of Ramanujan follows. See the references and a comment on A000727.
a(n) = +2*A001479(m+1) if prime(n) == A002476(m) (m is unique) is a prime of A272200 (type I).
a(n) = -2*A001479(m+1) if prime(n) == A002476(m) is from A272201 (type II).
See a comment above for the bisection of the primes 1 (mod 3) into type I and II.

A066501 Numbers k such that x^6 == 1 (mod(k)) has no solution 1 < x < k-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 11, 17, 22, 23, 25, 29, 34, 41, 46, 47, 50, 53, 58, 59, 71, 82, 83, 89, 94, 101, 106, 107, 113, 118, 121, 125, 131, 137, 142, 149, 166, 167, 173, 178, 179, 191, 197, 202, 214, 226, 227, 233, 239, 242, 250, 251, 257, 262, 263, 269, 274, 281, 289, 293
Offset: 1

Views

Author

Benoit Cloitre, Jan 04 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = {for (x=2, n-2, if ((Mod(x, n)^6) == Mod(1, n), return (0));); return (1);} \\ Michel Marcus, Nov 20 2013

Formula

Sequence consists of the numbers 4, 6 and for all k > 1, A045309(k), 2*A045309(k), A045309(k)^2, 2*A045309(k)^2.

Extensions

Extended by Ray Chandler, Nov 06 2003
Terms 1, 2 and 3 prepended by Michel Marcus, Nov 20 2013

A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13).

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757
Offset: 1

Views

Author

Keywords

Comments

Primes which have a remainder mod 13 that is prime.
Union of A141858, A100202, A102732, A140371 and A140373. - R. J. Mathar, Oct 29 2009

Examples

			11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.
		

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009
  • Mathematica
    f[n_]:=PrimeQ[Mod[n,13]]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,6,6!}];lst
    Select[Prime[Range[4000]],MemberQ[{2, 3, 5, 7, 11},Mod[#,13]]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    {forprime(p=2, 740, if(isprime(p%13), print1(p, ",")))} \\ Klaus Brockhaus, Oct 28 2009
    

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009

A074243 Numbers n such that every integer has a cube root mod n.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 23, 29, 30, 33, 34, 41, 46, 47, 51, 53, 55, 58, 59, 66, 69, 71, 82, 83, 85, 87, 89, 94, 101, 102, 106, 107, 110, 113, 115, 118, 123, 131, 137, 138, 141, 142, 145, 149, 159, 165, 166, 167, 170, 173, 174, 177, 178, 179, 187, 191, 197
Offset: 1

Views

Author

Jack Brennen, Sep 19 2002

Keywords

Comments

A positive integer n is in the sequence if x^3 (modulo n) describes a bijection from the set [0...n-1] to itself.
Every member of the sequence is squarefree. If m and n are coprime members of the sequence, m*n is also a member.
All primes > 3 in this sequence are congruent to 5 mod 6. See A045309. - Zak Seidov, Feb 16 2013
Products of distinct members of A045309 (primes not 1 mod 3). - Charles R Greathouse IV, Apr 20 2015
This sequence gives all values, ordered increasingly, for which A257301 vanishes, i.e., A257301(a(n))=0 for any n. - Stanislav Sykora, May 26 2015

Examples

			The number 30 is in the sequence because the function x^3 (mod 30) describes a bijection from [0...29] to itself. Thus every integer has a cube root, modulo 30.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= {2,3} union select(isprime, {seq(6*i+5,i=0..floor((N-5)/6))}):
    A:= {1}:
    for p in Primes do
    A:= A union map(`*`, select(`<=`, A, floor(N/p)),p)
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 20 2015
  • Mathematica
    fQ[n_] := Sort[PowerMod[#, 3, n] & /@ Range@ n] == Range@ n - 1; Select[Range@ 200, fQ] (* Michael De Vlieger, Apr 20 2015 *)
  • PARI
    is(n)=my(f=factor(n)); if(n>1 && vecmax(f[,2])>1, return(0)); for(i=1,#f~, if(f[i,1]%3==1, return(0))); 1 \\ Charles R Greathouse IV, Apr 20 2015

Formula

a(n) ~ k*n*sqrt(log(n)) for some constant k. - Charles R Greathouse IV, Apr 20 2015

Extensions

New name from Charles R Greathouse IV, Apr 20 2015

A272203 P-defects p - N(p) of the congruence y^2 == x^3 - 1 (mod p) for primes p, where N(p) is the number of solutions given by A272202(n).

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, -8, 0, 0, 4, -10, 0, -8, 0, 0, 0, 14, 16, 0, -10, 4, 0, 0, 14, 0, -20, 0, 2, 0, -20, 0, 0, 16, 0, 4, 14, -8, 0, 0, 0, 26, 0, 2, 0, 28, 16, 28, 0, -22, 0, 0, 14, 0, 0, 0, 0, 28, 26, 0, -32, 0, 16, 0, -22, 0, -32, -34, 0, 14, 0, 0, 4, 38, -8, 0, 0, -34, 0, 38, 0, -22, 0, 2, 28, 0, 0, -10, 0, -20, 0, 0, -44, 0, -32, 0, 0, 0, -8, -46, 40, 0, 0, 0, 16, -46
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

The analysis of this elliptic curve runs along the same lines as in A000727, A272197 and A272198, and it is inspired by the Silverman reference where the curve y^2 = x^3 + 1 modulo primes is treated.
The series showing the modularity pattern is the expansion of the 67th modular cusp form of weight 2 and level N=144, given in the table I of the Martin reference, i.e., eta^{12}(12*z)/( eta^4(6*z)*eta^4(24*z)), symbolically 12^{12} 6^(-4) 24^{-4}, in powers of q = exp(2*Pi*i*z), with Im(z) > 0. Here eta is the Dedekind function. See A187076 for the expansion in powers of q^6 (after deleting a factor q^(1/6)). Note that also for the possibly bad prime 2 and the bad prime 3 this expansion gives the correct numbers 0 (the discriminant of this elliptic curve is -3^3).
See also the comment on the Martin-Ono reference in A272202 which implies that 12^{12} 6^(-4) 24^{-4} provides the modularity sequence for this elliptic curve.
If prime(n) == 1 (mod 3) = A002476(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + 3*B(m)^2 with A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. In this case (4*prime(n) - a(n)^2)/12, seems to be a square, q(m)^2. In fact is seems that (the positive) q(m) = B(m). If this conjecture is true then a(n) = 2*(+-sqrt(prime(n) - 3*B(m)^2)) = +- 2*A(m) for prime(n) = A002476(m). This leads to a bisection of the primes 1 (mod 3) into two types: type I if the + sign applies, and type II for the - sign. Primes of type I are given in A272204: 7,13,31,61,67, ... and those of type II in A272205: 19,37,43,73,103, ...

Examples

			a(1) = 2 - A272202(1) = 0, and 2 == 2 (mod 3).
a(4) = 7 - A272202(4) = 7 - 3 = +4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272204(1), hence a(4) = +2*2 = +4.
a(8) = 19 - A272202(8) = 19 - 27 = -8, and 19 = A002476(3) = 4^2 + 3*1^2; 4=A001479(3+1), 19 = A272205(1), hence a(8) = 2*(-4) = -8.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).

Crossrefs

Formula

a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272202(n), the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is expected to be true by analogy to the case A272198 where only the signs differ.
a(n) = +2*A001479(m+1) if prime(n) == A002476(m) (m is unique) is a prime of A272204 (type I).
a(n) = -2*A001479(m+1) if prime(n) == A002476(m) is from A272205 (type II).
See a comment above for this bisection of the primes 1 (mod 3) into type I and II.
Showing 1-10 of 16 results. Next