cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167134 Primes congruent to {2, 3, 5, 7} mod 11.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 47, 71, 73, 79, 101, 113, 137, 139, 157, 167, 179, 181, 211, 223, 227, 233, 269, 271, 277, 293, 311, 313, 337, 359, 379, 401, 409, 421, 431, 443, 467, 487, 491, 509, 541, 557, 563, 577, 599, 601, 607, 619, 641, 643, 673, 709, 733, 739, 751
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 11 is prime.
Primes of the form 11*n+r where n >= 0 and r is in {2, 3, 5, 7}.
2 and primes congruent to {3, 5, 7, 13} mod 22. - Chai Wah Wu, Apr 29 2025

Crossrefs

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 11 in {2, 3, 5, 7} ];
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 11] | exists(u){ r: r in {2, 3, 5,7} | p eq (11*n+r) } } ];
  • Mathematica
    Select[Prime[Range[600]],MemberQ[{2, 3, 5, 7},Mod[#,11]]&] (* Vincenzo Librandi, Aug 05 2012 *)

A167135 Primes congruent to {2, 3, 5, 7, 11} mod 12.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 331, 347, 353, 359
Offset: 1

Views

Author

Klaus Brockhaus, Oct 28 2009

Keywords

Comments

Primes p such that p mod 12 is prime.
Primes of the form 12*n+r where n >= 0 and r is in {2, 3, 5, 7, 11}.
Except for the prime 2, these are the primes that are encountered in the set of numbers {x, f(f(x))} where x is of the form 4k+3 with k>=0, and where f(x) is the 3x+1-problem function, and f(f(x)) the second iteration value. Indeed this sequence is the set union of 2 and A002145 (4k+3 primes) and A007528 (6k+5 primes), since f(f(4k+3))=6k+5. Equivalently one does not get any prime from A068228 (the complement of the present sequence). - Michel Marcus and Bill McEachen, May 07 2016

Crossrefs

Subsequences: A002145, A007528. Complement: A068228.
Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135, A167119: primes p such that p mod k is prime, for k = 3..13 resp.

Programs

  • Magma
    [ p: p in PrimesUpTo(760) | p mod 12 in {2, 3, 5, 7, 11} ];
    
  • Magma
    [ p: p in PrimesUpTo(760) | exists(t){ n: n in [0..p div 12] | exists(u){ r: r in {2, 3, 5,7, 11} | p eq (12*n+r) } } ];
  • Maple
    isA167135  := n -> isprime(n) and not modp(n, 12) != 1:
    select(isA167135, [$1..360]); # Peter Luschny, Mar 28 2018
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{2,3, 5, 7, 11},Mod[#,12]]&] (* Vincenzo Librandi, Aug 05 2012 *)
    Select[Prime[Range[72]], Mod[#, 12] != 1 &] (* Peter Luschny, Mar 28 2018 *)

A215161 Primes congruent to {2, 3, 5, 7, 11} mod 17.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 37, 41, 53, 71, 73, 79, 107, 109, 113, 139, 173, 181, 211, 223, 241, 257, 277, 283, 311, 313, 317, 347, 359, 379, 419, 449, 461, 479, 487, 521, 547, 563, 617, 619, 631, 653, 683, 691, 719, 733, 751, 787, 821, 823, 827, 853, 857, 887, 929
Offset: 1

Views

Author

Vincenzo Librandi, Aug 05 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 17 in {2, 3, 5, 7, 11} ];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{2,3, 5, 7, 11},Mod[#,17]]&]

A215162 Primes congruent to {2, 3, 5, 7, 11} mod 19.

Original entry on oeis.org

2, 3, 5, 7, 11, 41, 43, 59, 79, 83, 97, 157, 163, 173, 193, 197, 211, 233, 239, 269, 271, 277, 307, 311, 347, 349, 353, 383, 401, 421, 439, 461, 463, 467, 499, 577, 613, 619, 653, 691, 727, 733, 743, 809, 839, 857, 877, 881, 919, 953, 971, 991
Offset: 1

Views

Author

Vincenzo Librandi, Aug 05 2012

Keywords

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 19 in {2, 3, 5, 7, 11} ];
  • Mathematica
    Select[Prime[Range[400]],MemberQ[{2,3, 5, 7, 11},Mod[#,19]]&]
Showing 1-4 of 4 results.