A045619 Numbers that are the products of 2 or more consecutive integers.
0, 2, 6, 12, 20, 24, 30, 42, 56, 60, 72, 90, 110, 120, 132, 156, 182, 210, 240, 272, 306, 336, 342, 360, 380, 420, 462, 504, 506, 552, 600, 650, 702, 720, 756, 812, 840, 870, 930, 990, 992, 1056, 1122, 1190, 1260, 1320, 1332, 1406, 1482, 1560, 1640, 1680
Offset: 1
Examples
30 is in the sequence as 30 = 5*6 = 5*(5+1). - _David A. Corneth_, Oct 19 2021
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T.D. Noe)
- P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois Jour. Math. 19 (1975), 292-301.
Crossrefs
Programs
-
Mathematica
maxNum = 1700; lst = {}; For[i = 1, i <= Sqrt[maxNum], i++, j = i + 1; prod = i*j; While[prod < maxNum, AppendTo[lst, prod]; j++; prod *= j]]; lst = Union[lst]
-
PARI
list(lim)=my(v=List([0]),P,k=1,t); while(1, k++; P=binomial('n+k-1,k)*k!; if(subst(P,'n,1)>lim, break); for(n=1,lim, t=eval(P); if(t>lim, next(2)); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Nov 16 2021
-
Python
import heapq from sympy import sieve def aupton(terms, verbose=False): p = 6; h = [(p, 2, 3)]; nextcount = 4; aset = {0, 2} while len(aset) < terms: (v, s, l) = heapq.heappop(h) aset.add(v) if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i]") if v >= p: p *= nextcount heapq.heappush(h, (p, 2, nextcount)) nextcount += 1 v //= s; s += 1; l += 1; v *= l heapq.heappush(h, (v, s, l)) return sorted(aset) print(aupton(52)) # Michael S. Branicky, Oct 19 2021
Formula
Since the oblong numbers (A002378) have relative density of 100%, we have a(n) ~ (n-1) n ~ n^2. - Daniel Forgues, Mar 26 2012
a(n) = n^2 - 2*n^(5/3) + O(n^(4/3)). - Charles R Greathouse IV, Aug 27 2013
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2000
More terms from Reinhard Zumkeller, Feb 27 2008
Incorrect program removed by David A. Corneth, Oct 19 2021
Comments