A045636 Numbers of the form p^2 + q^2, with p and q primes.
8, 13, 18, 29, 34, 50, 53, 58, 74, 98, 125, 130, 146, 170, 173, 178, 194, 218, 242, 290, 293, 298, 314, 338, 365, 370, 386, 410, 458, 482, 530, 533, 538, 554, 578, 650, 698, 722, 818, 845, 850, 866, 890, 962, 965, 970, 986, 1010, 1058, 1082, 1130, 1202, 1250
Offset: 1
Examples
18 belongs to the sequence because it can be written as 3^2 + 3^2.
Links
Crossrefs
Programs
-
Haskell
import Data.List (findIndices) a045636 n = a045636_list !! (n-1) a045636_list = findIndices (> 0) a045698_list -- Reinhard Zumkeller, Jul 29 2012
-
Mathematica
q=13; imax=Prime[q]^2; Select[Union[Flatten[Table[Prime[x]^2+Prime[y]^2, {x,q}, {y,x}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *) With[{nn=60},Take[Union[Total/@(Tuples[Prime[Range[nn]],2]^2)],nn]] (* Harvey P. Dale, Jan 04 2014 *)
-
PARI
list(lim)=my(p1=vector(primepi(sqrt(lim-4)),i,prime(i)^2), t, p2=List()); for(i=1,#p1, for(j=i,#p1, t=p1[i]+p1[j];if(t>lim, break, listput(p2,t)))); vecsort(Vec(p2),,8) \\ Charles R Greathouse IV, Jun 21 2012
-
Python
from sympy import primerange def aupto(limit): primes = list(primerange(2, int((limit-4)**.5)+2)) nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]] return sorted(set(k for k in nums if k <= limit)) print(aupto(1251)) # Michael S. Branicky, Aug 13 2021
Comments