cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045636 Numbers of the form p^2 + q^2, with p and q primes.

Original entry on oeis.org

8, 13, 18, 29, 34, 50, 53, 58, 74, 98, 125, 130, 146, 170, 173, 178, 194, 218, 242, 290, 293, 298, 314, 338, 365, 370, 386, 410, 458, 482, 530, 533, 538, 554, 578, 650, 698, 722, 818, 845, 850, 866, 890, 962, 965, 970, 986, 1010, 1058, 1082, 1130, 1202, 1250
Offset: 1

Views

Author

Keywords

Comments

A045698(a(n)) > 0. - Reinhard Zumkeller, Jul 29 2012
All terms greater than 8 are of the form 8k+2 or 8k+5 (A047617). - Giuseppe Melfi, Oct 06 2022

Examples

			18 belongs to the sequence because it can be written as 3^2 + 3^2.
		

Crossrefs

A214723 is a subsequence. Complement: A214879.
Cf. A214511 (least number having n orderless representations as p^2 + q^2).
Cf. A047617.

Programs

  • Haskell
    import Data.List (findIndices)
    a045636 n = a045636_list !! (n-1)
    a045636_list = findIndices (> 0) a045698_list
    -- Reinhard Zumkeller, Jul 29 2012
    
  • Mathematica
    q=13; imax=Prime[q]^2; Select[Union[Flatten[Table[Prime[x]^2+Prime[y]^2, {x,q}, {y,x}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    With[{nn=60},Take[Union[Total/@(Tuples[Prime[Range[nn]],2]^2)],nn]] (* Harvey P. Dale, Jan 04 2014 *)
  • PARI
    list(lim)=my(p1=vector(primepi(sqrt(lim-4)),i,prime(i)^2), t, p2=List()); for(i=1,#p1, for(j=i,#p1, t=p1[i]+p1[j];if(t>lim, break, listput(p2,t)))); vecsort(Vec(p2),,8) \\ Charles R Greathouse IV, Jun 21 2012
    
  • Python
    from sympy import primerange
    def aupto(limit):
        primes = list(primerange(2, int((limit-4)**.5)+2))
        nums = [p*p + q*q for i, p in enumerate(primes) for q in primes[i:]]
        return sorted(set(k for k in nums if k <= limit))
    print(aupto(1251)) # Michael S. Branicky, Aug 13 2021