cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045648 Number of chiral n-ominoes in (n-1)-space, one cell labeled.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 370, 841, 1937, 4488, 10470, 24617, 58237, 138435, 330563, 792745, 1908379, 4609434, 11167781, 27134824, 66102921, 161417867, 395042562, 968791315, 2380383481, 5859176855, 14446043494, 35672895787, 88219204394, 218466647493
Offset: 1

Views

Author

Keywords

Comments

Needed for generating chiral n-ominoes in (n-1)-space with no cells labeled, Lunnon's DR(n, n-1) - DE(n, n-1). Knuth describes a method for a similar enumeration, that of free trees with n nodes.
Euler transform of a(n) - if(n%4!=2, 0, a(n/2)) is sequence itself with offset 0.

References

  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*(a(d)-
          `if`(irem(d, 4)=2, a(d/2), 0)), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n-1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=c[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ](-1)^k ]; c[ 1 ]=1; c[ n_ ] := c[ n ]=Sum[ c[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ c[ i ], {i, 1, 30} ]
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-(-x)^k+x*O(x^n))^((-1)^k*polcoeff(A, k))); polcoeff(A, n))} /* Michael Somos, Dec 16 2002 */

Formula

G.f.: A(x) = x exp(A(x) + A(-x^2)/2 + A(x^3)/3 + A(-x^4)/4 + ...).
Also A(x) = Sum_{n >= 1} a(n)*x^n = x / Product_{n >= 1} (1-(-x)^n)^((-1)^n*a(n)).
G.f.: x*Product_{n>0} (1-x^(4n-2))^a(2n-1)/(1-x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = 2.58968405406171542574769690513208346256... and c = 0.386431095907583923297618874742... . - Vaclav Kotesovec, Feb 29 2016