A045648 Number of chiral n-ominoes in (n-1)-space, one cell labeled.
1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 370, 841, 1937, 4488, 10470, 24617, 58237, 138435, 330563, 792745, 1908379, 4609434, 11167781, 27134824, 66102921, 161417867, 395042562, 968791315, 2380383481, 5859176855, 14446043494, 35672895787, 88219204394, 218466647493
Offset: 1
References
- D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- W. F. Lunnon, Counting Multidimensional Polyominoes, Computer Journal, Vol. 18 (1975), pp. 366-367.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add(d*(a(d)- `if`(irem(d, 4)=2, a(d/2), 0)), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> b(n-1): seq(a(n), n=1..40); # Alois P. Heinz, Feb 24 2015
-
Mathematica
s[ n_, k_ ] := s[ n, k ]=c[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ](-1)^k ]; c[ 1 ]=1; c[ n_ ] := c[ n ]=Sum[ c[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ c[ i ], {i, 1, 30} ]
-
PARI
{a(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-(-x)^k+x*O(x^n))^((-1)^k*polcoeff(A, k))); polcoeff(A, n))} /* Michael Somos, Dec 16 2002 */
Formula
G.f.: A(x) = x exp(A(x) + A(-x^2)/2 + A(x^3)/3 + A(-x^4)/4 + ...).
Also A(x) = Sum_{n >= 1} a(n)*x^n = x / Product_{n >= 1} (1-(-x)^n)^((-1)^n*a(n)).
G.f.: x*Product_{n>0} (1-x^(4n-2))^a(2n-1)/(1-x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = 2.58968405406171542574769690513208346256... and c = 0.386431095907583923297618874742... . - Vaclav Kotesovec, Feb 29 2016
Comments