A045709 Primes with first digit 3.
3, 31, 37, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(3300) | Intseq(p)[#Intseq(p)] eq 3]; // Vincenzo Librandi, Aug 08 2014
-
Mathematica
Select[Table[Prime[n], {n, 4000}], First[IntegerDigits[#]]==3 &] (* Vincenzo Librandi, Aug 08 2014 *)
-
PARI
isok(n) = isprime(n) && (digits(n, 10)[1] == 3) \\ Michel Marcus, Jun 08 2013
-
Python
from itertools import chain, count, islice from sympy import primerange def A045709_gen(): # generator of terms return chain.from_iterable(primerange(3*(m:=10**l),m<<2) for l in count(0)) A045709_list = list(islice(A045709_gen(),40)) # Chai Wah Wu, Dec 07 2024
-
Python
from sympy import primepi def A045709(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+primepi(min(3*(m:=10**(l:=len(str(x))-1))-1,x))-primepi(min((m<<2)-1,x))+sum(primepi(3*(m:=10**i)-1)-primepi((m<<2)-1) for i in range(l)) return bisection(f,n,n) # Chai Wah Wu, Dec 07 2024
Extensions
More terms from Erich Friedman.