A045711 Primes with first digit 5.
5, 53, 59, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(5300) | Intseq(p)[#Intseq(p)] eq 5]; // Vincenzo Librandi, Aug 08 2014
-
Mathematica
Select[Table[Prime[n], {n, 5300}], First[IntegerDigits[#]]==5 &] (* Vincenzo Librandi, Aug 08 2014 *)
-
Python
from itertools import chain, count, islice from sympy import primerange def A045711_gen(): # generator of terms return chain.from_iterable(primerange(5*(m:=10**l),6*m) for l in count(0)) A045711_list = list(islice(A045711_gen(),40)) # Chai Wah Wu, Dec 08 2024
-
Python
from sympy import primepi def A045711(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+primepi(min(5*(m:=10**(l:=len(str(x))-1))-1,x))-primepi(min(6*m-1,x))+sum(primepi(5*(m:=10**i)-1)-primepi(6*m-1) for i in range(l)) return bisection(f,n,n) # Chai Wah Wu, Dec 08 2024
Extensions
More terms from Erich Friedman.
Leading 5 added by Jaroslav Krizek, Apr 29 2010
Comments