A045713 Primes with first digit 7.
7, 71, 73, 79, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(7300) | Intseq(p)[#Intseq(p)] eq 7]; // Vincenzo Librandi, Aug 08 2014
-
Mathematica
Select[ Table[ Prime[ n ], {n, 1000} ], First[ IntegerDigits[ # ]]==7& ]
-
Python
from itertools import chain, count, islice from sympy import primerange def A045713_gen(): # generator of terms return chain.from_iterable(primerange(7*(m:=10**l),m<<3) for l in count(0)) A045713_list = list(islice(A045713_gen(),40)) # Chai Wah Wu, Dec 08 2024
-
Python
from sympy import primepi def A045713(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+primepi(min(7*(m:=10**(l:=len(str(x))-1))-1,x))-primepi(min((m<<3)-1,x))+sum(primepi(7*(m:=10**i)-1)-primepi((m<<3)-1) for i in range(l)) return bisection(f,n,n) # Chai Wah Wu, Dec 08 2024
Extensions
More terms from Erich Friedman.
Corrected by Jud McCranie, Jan 03 2001
a(13)=757 added from Vincenzo Librandi, Aug 08 2014