A045715 Primes with first digit 9.
97, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(10^4) | Intseq(p)[#Intseq(p)] eq 9]; // Bruno Berselli, Jul 19 2014
-
Magma
[p: p in PrimesInInterval(9*10^n,10^(n+1)), n in [0..3]]; // Bruno Berselli, Aug 08 2014
-
Mathematica
Flatten[Table[Prime[Range[PrimePi[9 * 10^n] + 1, PrimePi[10^(n + 1)]]], {n, 3}]] (* Alonso del Arte, Jul 19 2014 *)
-
Python
from itertools import chain, count, islice def A045715_gen(): # generator of terms return chain.from_iterable(primerange(9*(m:=10**l),10*m) for l in count(0)) A045715_list = list(islice(A045715_gen(),40)) # Chai Wah Wu, Dec 08 2024
-
Python
from sympy import primepi def A045715(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+primepi(min(9*(m:=10**(l:=len(str(x))-1))-1,x))-primepi(min(10*m-1,x))+sum(primepi(9*(m:=10**i)-1)-primepi(10*m-1) for i in range(l)) return bisection(f,n,n) # Chai Wah Wu, Dec 08 2024
Extensions
More terms from Erich Friedman.