A045723 Number of configurations, excluding reflections and black-white interchanges, of n black and n white beads on a string.
1, 1, 3, 7, 23, 71, 252, 890, 3299, 12283, 46508, 176870, 677294, 2602198, 10034104, 38787572, 150289699, 583434323, 2268861516, 8836447022, 34461940538, 134564992898, 526025965864, 2058359779052, 8061905791118, 31602659998046
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eddie Cheng and Jerrold W. Grossman, Problem 1959, Mathematics Magazine 87 (Dec. 2014), p. 396.
- L. Clarisse and P. Wocjan, On independent permutation separability criteria, Quant. Inf. Comp. 6 277-288, 2006, arXiv:quant-ph/0504160, 2005.
Programs
-
Mathematica
Table[ 1/4 (2^n + Binomial[ 2 n, n ] + 2 Binomial[ -1 + n, 1/2 (-2 + n) ]*Mod[ 1 + n, 2 ]), {n, 0, 24} ]
-
PARI
a(n) = (1/4)*(2^n + binomial(2*n, n) + if ((n+1)%2, 2*binomial(n-1, (1/2)*(n-2)))); \\ Michel Marcus, Nov 25 2018
Formula
a(n) = (1/4)*(2^n + C(2*n, n) + 2*C(n-1, (1/2)*(n-2))*((n+1) mod 2)).
Comments