cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A296143 Number of configurations, excluding reflections and color swaps, of n beads each of three colors on a string.

Original entry on oeis.org

1, 11, 148, 2955, 63231, 1430912, 33259920, 788827215, 18989544145, 462583897776, 11377251858336, 282061000649064, 7039841561638536, 176714389335432960, 4457914983511649088, 112945455380006673039, 2872488224771372668725, 73301643957476400237200, 1876197202671454764901800, 48152601206547990689466930
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=3.

A296144 Number of configurations, excluding reflections and color swaps, of n beads each of four colors on a string.

Original entry on oeis.org

1, 65, 7780, 1315825, 244448316, 48099214856, 9844135755168, 2074189508907945, 446932339677117580, 98028351499011470680, 21813996435165740009568, 4912693780465467348590056, 1117598703447726807428962400, 256444915320263078585645544000, 59283681793041084579875939892480, 13794224341895239072712767055117865
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=4.

A296145 Number of configurations, excluding reflections and color swaps, of n beads each of five colors on a string.

Original entry on oeis.org

1, 513, 701260, 1273147785, 2597337494136, 5711975829039480, 13239412829570653440, 31902976888441563215025, 79210992511055955027177700, 201394898991255834414075013488, 522024491776928458970588283023040, 1374924298868439440732405164346591160, 3670434093979203432106449568933449100800, 9911788665178411118992936004423729374579200
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=5.

A296146 Number of configurations, excluding reflections and color swaps, of n beads each of six colors on a string.

Original entry on oeis.org

1, 5363, 95304160, 2254635672135, 61689337799825736, 1854290094982330189184, 59529536963190914931717120, 2006426039057377710970239751995, 70206501544183654687465441723567000, 2530662094366411886472214155427418011488, 93449587615256254621892607439280048712775680
Offset: 1

Views

Author

Marko Riedel, Dec 05 2017

Keywords

Comments

Power Group Enumeration applies here.

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=6.

A045610 Number of different energy states of n positive and n negative charges on a string.

Original entry on oeis.org

1, 1, 3, 7, 22, 70, 249, 880, 3238, 12180, 46247, 174458, 672920, 2585414, 10015955
Offset: 0

Views

Author

Keywords

Examples

			For n=3 the 20 different arrangements of -1,-1,-1,1,1,1 result in 7 energy levels (sum of signed inverse distances):
{0,0,0,1,1,1},{1,1,1,0,0,0}: 13/10
{0,0,1,0,1,1},{1,1,0,1,0,0}: -41/30
{0,0,1,1,0,1},{0,1,0,0,1,1},{1,0,1,1,0,0},{1,1,0,0,1,0}: -56/30
{0,0,1,1,1,0},{0,1,1,1,0,0},{1,0,0,0,1,1},{1,1,0,0,0,1}: -8/10
{0,1,0,1,0,1},{1,0,1,0,1,0}: -37/10
{0,1,0,1,1,0},{0,1,1,0,1,0},{1,0,0,1,0,1},{1,0,1,0,0,1}: -89/30
{0,1,1,0,0,1},{1,0,0,1,1,0}: -71/30
so the multiplicities are 4*2 + 3*4 = 20 = binomial(6,3).
		

Crossrefs

Cf. A045723.

Programs

  • Mathematica
    f[li_: {(0 | 1) ..}] := Outer[Times, 2 li - 1, 2 li - 1];
    Table[Length @ Tally[Total[1/DeleteCases[f[#] DistanceMatrix[Range[2 n]], 0, 2], 2] & /@ Permutations[Join[Table[0, n], Table[1, n]]]], {n, 10}] (* Wouter Meeussen, Mar 15 2021 *)

Extensions

Corrected and extended by Wouter Meeussen, Mar 15 2021
a(12)-a(15) from Sean A. Irvine, Mar 15 2021

A045631 Number of 2n-bead black-white reversible complementable strings with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 243, 889, 3276, 12276, 46435, 176869, 677022, 2602197, 10033212, 38787495, 150286400, 583434322, 2268848988, 8836447021, 34461894010, 134564992002, 526025788992, 2058359779051, 8061905110548, 31602659997975
Offset: 0

Views

Author

Keywords

Formula

Moebius transform of A045723 (Christian Bower).
Showing 1-6 of 6 results.