cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045770 Numbers k such that sigma(k) == 8 (mod k).

Original entry on oeis.org

1, 7, 10, 49, 56, 368, 836, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 2087936, 2291936, 13174976, 29465852, 35021696, 45335936, 120888092, 260378492, 381236216, 775397948, 3381872252, 4856970752, 6800228816, 8589344768, 44257207676, 114141404156, 1461083549696, 1471763808896, 2199013818368
Offset: 1

Views

Author

Keywords

Comments

Every number of the form 2^(j-1)*(2^j - 9), where 2^j - 9 is prime, is a term. - Jon E. Schoenfield, Jun 02 2019
If m is a term of A045768 with gcd(m,3) = 1 and sigma(m) = 3*q*m + 2 for some integer q, then 3*m is a term of this sequence since sigma(3*m) = 4*q*(3*m) + 8. Some other large terms: 36893488108764397568, 877615520070055755776, 1700388548189538291286016, 85954979333046510417991676, 2081228720695521934665574252544. - Max Alekseyev, May 25 2025

Crossrefs

Programs

  • Maple
    q:= k-> nops(map(x-> x mod k, {8, numtheory[sigma](k)}))=1:
    select(q, [$1..100000])[];  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    Select[Range[1000000], Mod[DivisorSigma[1, #] - 8, #] == 0 &] (* Pontus von Brömssen, Apr 07 2025 *)
  • PARI
    isok(k) = Mod(sigma(k),k) == 8; \\ Pontus von Brömssen, Apr 07 2025

Extensions

a(18)-a(26) from T. D. Noe, Apr 06 2011
Initial term 1 added and a(27)-a(31) from Donovan Johnson, Mar 01 2012
a(32)-a(34) from Giovanni Resta, Apr 02 2014
Term a(2)=7 inserted by Pontus von Brömssen, Apr 07 2025