cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045803 3-ish numbers (end in 17, 19, 31, 33).

Original entry on oeis.org

17, 19, 31, 33, 117, 119, 131, 133, 217, 219, 231, 233, 317, 319, 331, 333, 417, 419, 431, 433, 517, 519, 531, 533, 617, 619, 631, 633, 717, 719, 731, 733, 817, 819, 831, 833, 917, 919, 931, 933, 1017, 1019, 1031, 1033, 1117, 1119, 1131, 1133, 1217, 1219
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a045803 n = a045803_list !! (n-1)
    a045803_list = findIndices (`elem` [17,19,31,33]) $ cycle [0..99]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Mathematica
    Select[Range[1300],MemberQ[{17,19,31,33},Mod[#,100]]&] (* or *) LinearRecurrence[{1,0,0,1,-1},{17,19,31,33,117},50] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    a(n) = -75/2 - (23*(-1)^n)/2 - (9-9*I)*(-I)^n - (9+9*I)*I^n + 25*n \\ Colin Barker, Oct 16 2015
    
  • PARI
    Vec(x*(17+2*x+12*x^2+2*x^3+67*x^4)/(1-x-x^4+x^5) + O(x^100)) \\ Colin Barker, Oct 16 2015

Formula

G.f.: x*(17+2*x+12*x^2+2*x^3+67*x^4)/(1-x-x^4+x^5). - Colin Barker, Jan 23 2012
a(n) = -75/2 - (23*(-1)^n)/2 - (9-9*i)*(-i)^n - (9+9*i)*i^n + 25*n where i=sqrt(-1). - Colin Barker, Oct 16 2015

Extensions

More terms from Erich Friedman