cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045847 Matrix whose (i,j)-th entry is number of representations of j as a sum of i squares of nonnegative integers; read by diagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 1, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 2, 0, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 6, 2, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			Rows are
1,0,0,..;
1,1,0,0,1,0..;
1,2,1,0,2,2,..;
1,3,3,1,...
		

Crossrefs

Diagonal gives A287617.
Antidiagonal sums give A302018.

Formula

i-th row is expansion of (1+x+x^4+x^9+...)^i.

Extensions

More terms from Erich Friedman

A340946 Number of ways to write n as an ordered sum of 9 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 9, 0, 0, 36, 0, 9, 84, 0, 72, 126, 0, 252, 135, 36, 504, 156, 252, 630, 288, 756, 576, 606, 1260, 756, 1207, 1260, 1584, 2052, 1008, 2727, 2688, 1764, 3663, 2718, 3816, 4608, 2853, 5418, 6048, 4620, 5868, 7506, 7464, 7308, 8442, 8958, 11088, 10404, 9684, 13986, 14184, 13020
Offset: 9

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..63);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 63; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^9/512, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (theta_3(x) - 1)^9 / 512, where theta_3() is the Jacobi theta function.

A025444 Number of partitions of n into 5 distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0
Offset: 0

Views

Author

Keywords

Examples

			a(111) = 2 via 1 + 4 + 9 + 16 + 81 = 1 + 9 + 16 + 36 + 49. - _David A. Corneth_, Feb 02 2021
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Oct 18 2010: (Start)
    A025444aux := proc(n,m,nmax) local a,m,upn,lv ; if m = 1 then if issqr(n) and nmax^2 >= n and n >= 1 then return 1; else return 0; end if; else a := 0 ; for upn from 1 to nmax do lv := n-upn^2 ; if lv <0 then break; end if; a := a + procname(lv,m-1,upn-1) ; end do: return a; end if; end proc:
    A025444 := proc(n) A025444aux(n,5,n) ; end proc: (End)

Formula

a(n) = [x^n y^5] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

A341000 Number of partitions of n into 9 distinct nonzero squares.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 2
Offset: 285

Views

Author

Ilya Gutkovskiy, Feb 02 2021

Keywords

Examples

			a(381) = 2 via 1 + 4 + 9 + 16 + 36 + 49 + 64 + 81 + 121 = 1 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100. - _David A. Corneth_, Feb 02 2021
		

Crossrefs

A341404 Number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_9)^2 <= n.

Original entry on oeis.org

1, 10, 46, 130, 265, 463, 799, 1339, 2014, 2780, 3860, 5444, 7301, 9263, 11783, 15263, 19250, 23237, 27893, 34193, 41519, 48701, 56765, 67421, 79484, 91067, 103739, 119855, 138035, 155819, 174923, 198863, 225890, 251444, 277976, 311492, 349122, 384420, 421284
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A045851.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 9)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..38);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 38; CoefficientList[Series[(1 + EllipticTheta[3, 0, x])^9/(512 (1 - x)), {x, 0, nmax}], x]

Formula

G.f.: (1 + theta_3(x))^9 / (512 * (1 - x)).
a(n^2) = A055408(n).
Showing 1-5 of 5 results.