cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A287617 Main diagonal of A045847.

Original entry on oeis.org

1, 1, 1, 1, 5, 21, 61, 141, 309, 766, 2191, 6436, 18041, 48348, 128311, 347166, 960197, 2674883, 7413514, 20411986, 56130675, 154907229, 429349768, 1192532452, 3312339849, 9196063371, 25538113056, 70994900341, 197595884071, 550414483911, 1533911418946
Offset: 0

Views

Author

Seiichi Manyama, May 28 2017

Keywords

Comments

a(n) is the number of representations of n as a sum of n squares of nonnegative integers.

Crossrefs

Cf. A045847.

Formula

a(n) = [x^n] (1 + theta_3(x))^n/2^n, where theta_() is the Jacobi theta function. - Ilya Gutkovskiy, Jan 17 2018
a(n) ~ c * d^n / sqrt(n), where d = 2.83312434251238... and c = 0.229098651125... - Vaclav Kotesovec, Mar 25 2023

A290054 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j^3))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 1, 0, 1, 9, 28, 35, 15, 1, 0, 0, 2, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 3, 2, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 4, 6, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k nonnegative cubes.

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  0,  0,  0,  0,   1,  ...
		

Crossrefs

Main diagonal gives A291700.
Antidiagonal sums give A302019.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^i^3, {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j^3))^k.

A045849 Number of nonnegative solutions of x1^2 + x2^2 + ... + x7^2 = n.

Original entry on oeis.org

1, 7, 21, 35, 42, 63, 112, 141, 126, 154, 259, 315, 280, 308, 462, 567, 497, 462, 693, 910, 798, 749, 1078, 1281, 1092, 1043, 1407, 1715, 1576, 1449, 1946, 2422, 2016, 1687, 2429, 3045, 2604, 2345, 3066
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (1 + EllipticTheta[3, 0, q])^7/128 + O[q]^50 // CoefficientList[#, q]& (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)=Vec((sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))^7) \\ Andrew Howroyd, Aug 08 2018
    
  • Ruby
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      (0..s1 - 1).each{|i|
        (0..s2 - 1).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary[0..m]
    end
    def power(ary, n, m)
      if n == 0
        a = Array.new(m + 1, 0)
        a[0] = 1
        return a
      end
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A(k, n)
      ary = Array.new(n + 1, 0)
      (0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
      power(ary, k, n)
    end
    p A(7, 100) # Seiichi Manyama, May 28 2017

Formula

Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^7.
G.f.: (1 + theta_3(q))^7/128, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

A045851 Number of nonnegative solutions of x1^2 + x2^2 + ... + x9^2 = n.

Original entry on oeis.org

1, 9, 36, 84, 135, 198, 336, 540, 675, 766, 1080, 1584, 1857, 1962, 2520, 3480, 3987, 3987, 4656, 6300, 7326, 7182, 8064, 10656, 12063, 11583, 12672, 16116, 18180, 17784, 19104, 23940, 27027, 25554
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (1 + EllipticTheta[3, 0, q])^9/512 + O[q]^40 // CoefficientList[#, q]& (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)=Vec((sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))^9) \\ Andrew Howroyd, Aug 08 2018
    
  • Ruby
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      (0..s1 - 1).each{|i|
        (0..s2 - 1).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary[0..m]
    end
    def power(ary, n, m)
      if n == 0
        a = Array.new(m + 1, 0)
        a[0] = 1
        return a
      end
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A(k, n)
      ary = Array.new(n + 1, 0)
      (0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
      power(ary, k, n)
    end
    p A(9, 100) # Seiichi Manyama, May 28 2017

Formula

Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^9.
G.f.: (1 + theta_3(q))^9/512, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

A045850 Number of nonnegative solutions of x1^2 + x2^2 + ... + x8^2 = n.

Original entry on oeis.org

1, 8, 28, 56, 78, 112, 196, 288, 309, 344, 532, 736, 756, 784, 1092, 1456, 1486, 1400, 1792, 2464, 2562, 2352, 2940, 3872, 3864, 3536, 4256, 5432, 5608, 5216, 6076, 7840, 7933, 6832, 7952, 10472, 10494
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (1 + EllipticTheta[3, 0, q])^8/256 + O[q]^40 // CoefficientList[#, q]& (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)=Vec((sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))^8) \\ Andrew Howroyd, Aug 08 2018
    
  • Ruby
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      (0..s1 - 1).each{|i|
        (0..s2 - 1).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary[0..m]
    end
    def power(ary, n, m)
      if n == 0
        a = Array.new(m + 1, 0)
        a[0] = 1
        return a
      end
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A(k, n)
      ary = Array.new(n + 1, 0)
      (0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
      power(ary, k, n)
    end
    p A(8, 100) # Seiichi Manyama, May 28 2017

Formula

Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^8.
G.f.: (1 + theta_3(q))^8/256, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

A045852 Number of nonnegative solutions of x1^2 + x2^2 + ... + x10^2 = n.

Original entry on oeis.org

1, 10, 45, 120, 220, 342, 570, 960, 1350, 1640, 2191, 3240, 4200, 4720, 5760, 7920, 9865, 10620, 11965, 15600, 19332, 20550, 22200, 28080, 34200, 35582, 37395, 45720, 54600, 56970, 59460, 71040, 84330, 87090, 88195, 104040, 123200, 125710, 126540, 148560
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= b(n, 10):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    Take[CoefficientList[Expand[(Total[x^Range[0,5]^2])^10],x],50] (* Harvey P. Dale, May 20 2011 *)
  • Ruby
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      (0..s1 - 1).each{|i|
        (0..s2 - 1).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary[0..m]
    end
    def power(ary, n, m)
      if n == 0
        a = Array.new(m + 1, 0)
        a[0] = 1
        return a
      end
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A(k, n)
      ary = Array.new(n + 1, 0)
      (0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
      power(ary, k, n)
    end
    p A(10, 100) # Seiichi Manyama, May 28 2017

Formula

Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^10.
G.f.: ((1 + theta_3(x)) / 2)^10. - Ilya Gutkovskiy, Feb 10 2021

A363778 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} x^(j^2))^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 3, -1, 0, 1, -4, 6, -4, 0, 0, 1, -5, 10, -10, 3, 1, 0, 1, -6, 15, -20, 12, 0, -2, 0, 1, -7, 21, -35, 31, -9, -5, 3, 0, 1, -8, 28, -56, 65, -36, -2, 12, -3, 0, 1, -9, 36, -84, 120, -96, 24, 24, -18, 1, 0, 1, -10, 45, -120, 203, -210, 105, 20, -54, 18, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 21 2023

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1,    1, ...
  0, -1, -2,  -3,  -4,  -5,   -6, ...
  0,  1,  3,   6,  10,  15,   21, ...
  0, -1, -4, -10, -20, -35,  -56, ...
  0,  0,  3,  12,  31,  65,  120, ...
  0,  1,  0,  -9, -36, -96, -210, ...
  0, -2, -5,  -2,  24, 105,  294, ...
		

Crossrefs

Columns k=0..3 give A000007, A317665, A363774, A363775.
Main diagonal gives A363780.

Formula

T(0,k) = 1; T(n,k) = -(k/n) * Sum_{j=1..n} A162552(j) * T(n-j,k).

A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k tetrahedral (or triangular pyramidal) numbers (A000292).

Examples

			Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0,  0,  1,  3,   6,  10,  ...
0,  0,  0,  1,   4,  10,  ...
0,  1,  2,  3,   5,  10,  ...
0,  0,  2,  6,  12,  21,  ...
		

Crossrefs

Cf. A000007 (column 0), A023533 (column 1), A282172 (column 5).
Main diagonal gives A303170.
Similar to, but different from, A045847.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

A290430 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 1, 0, 1, 6, 10, 4, 0, 2, 0, 0, 1, 7, 15, 10, 1, 3, 2, 0, 0, 1, 8, 21, 20, 5, 4, 6, 0, 0, 0, 1, 9, 28, 35, 15, 6, 12, 3, 0, 0, 0, 1, 10, 36, 56, 35, 12, 20, 12, 0, 0, 0, 0, 1, 11, 45, 84, 70, 28, 31, 30, 4, 0, 1, 0, 0, 1, 12, 55, 120, 126, 64, 49, 60, 20, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k square pyramidal numbers (A000330).

Examples

			Square array begins:
1,  1,  1,  1,  1,   1,  ...
0,  1,  2,  3,  4,   5,  ...
0,  0,  1,  3,  6,  10,  ...
0,  0,  0,  1,  4,  10,  ...
0,  0,  0,  0,  1,   5,  ...
0,  1,  2,  3,  4,   6,  ...
		

Crossrefs

Cf. A000007 (column 0), A253903 (column 1), A282173 (column 6).
Main diagonal gives A303172.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (2 i + 1)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(2*j+1)/6))^k.

A302018 Expansion of 1/(1 - x*(1 + theta_3(x))/2), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 129, 220, 377, 644, 1101, 1883, 3219, 5506, 9414, 16098, 27527, 47069, 80488, 137630, 235343, 402427, 688134, 1176685, 2012085, 3440591, 5883279, 10060183, 17202533, 29415676, 50299693, 86010564, 147074801, 251492331, 430042340, 735356089, 1257431006
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 30 2018

Keywords

Crossrefs

Antidiagonal sums of A045847.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x (1 + EllipticTheta[3, 0, x])/2), {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[1/(1 - x Sum[x^k^2, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Sum_{k>=0} x^(k^2)).
a(0) = 1; a(n) = Sum_{k=1..n} A010052(k-1)*a(n-k).
Showing 1-10 of 12 results. Next