cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045847 Matrix whose (i,j)-th entry is number of representations of j as a sum of i squares of nonnegative integers; read by diagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 1, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 2, 0, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 6, 2, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			Rows are
1,0,0,..;
1,1,0,0,1,0..;
1,2,1,0,2,2,..;
1,3,3,1,...
		

Crossrefs

Diagonal gives A287617.
Antidiagonal sums give A302018.

Formula

i-th row is expansion of (1+x+x^4+x^9+...)^i.

Extensions

More terms from Erich Friedman

A340906 Number of ways to write n as an ordered sum of 7 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 7, 0, 0, 21, 0, 7, 35, 0, 42, 35, 0, 105, 28, 21, 140, 49, 105, 105, 106, 210, 84, 182, 210, 217, 287, 105, 420, 378, 126, 497, 392, 420, 532, 350, 630, 714, 434, 546, 980, 742, 609, 980, 896, 1071, 882, 875, 1470, 1239, 1099, 1155, 1722, 1652, 882, 1933, 1995, 1554, 2072, 1505
Offset: 7

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..67);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 67; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^7/128, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (theta_3(x) - 1)^7 / 128, where theta_3() is the Jacobi theta function.

A340998 Number of partitions of n into 7 distinct nonzero squares.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2, 3, 0, 0, 2, 2
Offset: 140

Views

Author

Ilya Gutkovskiy, Feb 02 2021

Keywords

Crossrefs

A341402 Number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.

Original entry on oeis.org

1, 8, 29, 64, 106, 169, 281, 422, 548, 702, 961, 1276, 1556, 1864, 2326, 2893, 3390, 3852, 4545, 5455, 6253, 7002, 8080, 9361, 10453, 11496, 12903, 14618, 16194, 17643, 19589, 22011, 24027, 25714, 28143, 31188, 33792, 36137, 39203, 42920, 46294, 49108, 52580, 57165, 61365
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A045849.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 44; CoefficientList[Series[(1 + EllipticTheta[3, 0, x])^7/(128 (1 - x)), {x, 0, nmax}], x]

Formula

G.f.: (1 + theta_3(x))^7 / (128 * (1 - x)).
a(n^2) = A055406(n).

A282248 Expansion of (Sum_{k>=0} x^(k*(5*k-3)/2))^7.

Original entry on oeis.org

1, 7, 21, 35, 35, 21, 7, 8, 42, 105, 140, 105, 42, 7, 21, 105, 210, 210, 112, 63, 105, 175, 245, 252, 147, 77, 210, 420, 455, 315, 147, 35, 105, 420, 637, 483, 273, 266, 315, 392, 532, 483, 357, 532, 840, 840, 567, 315, 210, 421, 840, 1050, 777, 462, 497, 707, 882, 917, 735, 525, 889, 1407, 1407, 1050, 770, 525, 630, 1302
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 7 heptagonal numbers (A000566).
a(n) > 0 for all n >= 0.
Every number is the sum of at most 7 heptagonal numbers.
Every number is the sum of at most k k-gonal numbers (Fermat's polygonal number theorem).

Examples

			a(7) = 8 because we have
[7, 0, 0, 0, 0, 0, 0]
[0, 7, 0, 0, 0, 0, 0]
[0, 0, 7, 0, 0, 0, 0]
[0, 0, 0, 7, 0, 0, 0]
[0, 0, 0, 0, 7, 0, 0]
[0, 0, 0, 0, 0, 7, 0]
[0, 0, 0, 0, 0, 0, 7]
[1, 1, 1, 1, 1, 1, 1]
		

Crossrefs

Programs

  • Mathematica
    nmax = 67; CoefficientList[Series[Sum[x^(k (5 k - 3)/2), {k, 0, nmax}]^7, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k*(5*k-3)/2))^7.
Showing 1-5 of 5 results.