cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A276413 Non-repdigit numbers k that divide A045876(k).

Original entry on oeis.org

370, 407, 481, 518, 592, 629, 2727, 13008, 14634, 16260, 19512, 22764, 29268, 39024, 87804, 101010, 102564, 103896, 104895, 105820, 108262, 109890, 113960, 115830, 116883, 124740, 125356, 125874, 126984, 128205, 129870, 132275, 134680, 135135, 136752
Offset: 1

Views

Author

Altug Alkan, Sep 05 2016

Keywords

Comments

A161020 is a subsequence.

Examples

			2727 is a term because 2277 + 2727 + 2772 + 7227 + 7272 + 7722 = 29997 is divisible by 2727.
		

Crossrefs

Programs

  • Maple
    filter:= proc(x) local L, D, n, M, s, j;
      L:= convert(x, base, 10);
      D:= [seq(numboccur(j, L), j=0..9)];
      if numboccur(0,D) = 9 then return false fi;
      n:= nops(L);
      M:= n!/mul(d!, d=D);
        s:= add(j*D[j+1], j=0..9);
      evalb(((10^n-1)*M/9/n*s) mod x = 0)
    end proc:
    select(filter, [$1..2*10^5]); # Robert Israel, Sep 12 2016
  • PARI
    A047726(n) = n=eval(Vec(Str(n))); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);
    A055642(n) = #Str(n);
    A007953(n) = sumdigits(n);
    A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));
    isA010785(n) = {1==#Set(digits(n))}
    lista(nn) = for(n=1, nn, if(A045876(n) % n == 0 && !isA010785(n), print1(n", ")));

A276502 Least k > 0 such that A045876(n) divides A045876(n*10^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 6
Offset: 1

Views

Author

Altug Alkan, Sep 10 2016

Keywords

Comments

Corresponding values of A045876(n*10^a(n))/A045876(n) are 11, 11, 11, 11, 11, 11, 11, 11, 11, 101, 303, 303, 303, 303, 303, 303, 303, 303, 303, 101, 303, 303, 303, 303, 303, 303, 303, 303, 303, 101, ...
From Charlie Neder, Jul 16 2018: (Start)
From the formula for A045876(n) we make the following modifications:
- A (the mean of the digits) becomes S/D (sum of digits / # of digits)
- N (# of arrangements of digits) becomes R*Z (# of arrangements of nonzero digits * # of ways to insert the proper number of zeros)
Appending zeros to n does not change S or R, so if (S*R*Z*I/D)(n) divides (S*R*Z*I/D)(n*10^k), then (Z*I/D)(n) divides (Z*I/D)(n*10^k). However, Z, I, and D are completely determined by the number of digits of n and the number of those digits which are zero, so a(n) = a(A136400(n)). (End)

Examples

			a(10) = 2 because A045876(10) = 1+10 = 11 does not divide A045876(100) = 1+10+100 = 111 and 11 divides A045876(1000) = 1+10+100+1000 = 1111.
		

Crossrefs

Cf. A045876.

Programs

A276510 Numbers k such that the sum of all the different permutations of the digits of k (A045876(k)) is a pandigital number (a term of A171102).

Original entry on oeis.org

10234567, 10234576, 10234579, 10234597, 10234657, 10234675, 10234678, 10234687, 10234756, 10234759, 10234765, 10234768, 10234786, 10234795, 10234867, 10234876, 10234957, 10234975, 10235467, 10235476, 10235479, 10235497, 10235647, 10235674, 10235746, 10235749
Offset: 1

Views

Author

Altug Alkan, Sep 06 2016

Keywords

Examples

			10234759 is a term because A045876(10234759) = 1567999984320, which contains every digit from 0 to 9.
		

Crossrefs

Programs

A276597 Least k such that n divides A045876(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 10, 39, 49, 59, 69, 79, 89, 102, 199, 109, 106, 13, 599, 103, 799, 139, 108, 149, 2999, 104, 4999, 169, 12, 179, 8999, 105, 100, 289, 139, 389, 10000, 106, 79999, 13, 159, 689, 299999, 107, 100006, 1789, 179, 2789, 899999, 108, 14, 4789, 199, 5789, 5999999, 109
Offset: 1

Views

Author

Altug Alkan, Sep 08 2016

Keywords

Comments

Corresponding values of A045876(a(n))/n are 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 11, 11, 11, 11, 11, 11, 37, 111, 111, 74, 2, 111, 37, 111, 111, 74, 111, 1111, 37, 1111, 111, 1, 111, 1111, 37, 3, 111, 74, 111, 271, 37, 11111, 1, 74, 111, 111111, 37, 79365, 3333, ...

Examples

			a(10) = 19 because 19+91 = 110 is divisible by 10.
a(18) = 102 because 12+21+102+120+201+210 is divisible by 18.
		

Crossrefs

Cf. A045876.

Programs

A276802 Non-repdigit numbers n such that A045876(n) ends with n.

Original entry on oeis.org

554, 3328, 55553, 77764, 222221, 444442, 666663, 888865, 888884, 5555552, 6666595, 9999840, 33332680, 55555526, 66666557, 99998670, 333332176, 333333312, 555555551, 666665752, 666666624, 999997536, 999999936, 9999976480, 9999997844, 9999999668, 9999999923, 11111111110
Offset: 1

Views

Author

Altug Alkan, Sep 17 2016

Keywords

Examples

			554 is a term because 455+545+554 = 1554 that ends with 554.
2338 is the least term having its digits. For all permutations p of digits of n, in this case 2338, (without leading zeros if any), A045876(n) = A045876(p). A045876(2338) = 53328. It contains the digits of 2338 and ends with its digits permuted. 2338 has 4 digits, as has 53328 mod 10^4 so 53328 mod 10^4 == 3328 is a term. - _David A. Corneth_, Oct 04 2016
		

Crossrefs

Cf. A045876, A139819 (non-repdigits), A179239.

Programs

Extensions

More terms from David A. Corneth, Oct 06 2016

A282134 First differences of A045876.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 22, 11, 11, 11, 11, 11, 11, 11, -88, 11, -11, 33, 11, 11, 11, 11, 11, 11, -88, 11, 11, -22, 44, 11, 11, 11, 11, 11, -88, 11, 11, 11, -33, 55, 11, 11, 11, 11, -88, 11, 11, 11, 11, -44, 66, 11, 11, 11, -88, 11, 11, 11, 11, 11, -55, 77, 11, 11, -88, 11, 11, 11, 11, 11, 11, -66, 88, 11, -88, 11
Offset: 1

Views

Author

Altug Alkan, Feb 06 2017

Keywords

Comments

See also scatterplot of this sequence.

Examples

			a(11) = 22 because A045876(12) - A045876(11) = (12 + 21) - 11 = 22.
		

Crossrefs

Cf. A045876.

Programs

  • Mathematica
    Differences@ Table[Total[FromDigits /@ Permutations@ IntegerDigits@ n], {n, 81}] (* Michael De Vlieger, Feb 07 2017, after T. D. Noe at A045876 *)
  • PARI
    A045876(n) = {my(d=digits(n), q=1, v, t=1); v = vecsort(d); for(i=1, #v-1, if(v[i]==v[i+1], t++, q*=binomial(i, t); t=1)); q*binomial(#v, t)*(10^#d-1)*vecsum(d)/9/#d}
    a(n) = A045876(n+1) - A045876(n);

Formula

a(n) = A045876(n+1) - A045876(n).

A276739 Least k such that A045876(k) is divisible by 10^n.

Original entry on oeis.org

1, 19, 10699, 102589, 10000112389
Offset: 0

Views

Author

Altug Alkan, Sep 16 2016

Keywords

Comments

Corresponding values of A045876(k) are 1, 110, 3333300, 333333000, ...
Sequence is infinite.
a(5) > 10^18. - Giovanni Resta, Sep 27 2016
Subsequence of A179239. - David A. Corneth, Oct 01 2016

Examples

			a(1) = 19 because 19+91 = 110 is divisible by 10.
		

Crossrefs

Cf. A045876.

Programs

  • Mathematica
    Table[k = 1; While[! Divisible[Total[FromDigits /@ Permutations@ IntegerDigits@ k], 10^n], k++]; k, {n, 0, 3}] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    A047726(n) = n=digits(n); (#n)!/prod(i=0, 9, sum(j=1, #n, n[j]==i)!);
    A055642(n) = #Str(n);
    A007953(n) = sumdigits(n);
    A045876(n) = ((10^A055642(n)-1)/9)*(A047726(n)*A007953(n)/A055642(n));
    a(n) = {my(k = 1); while (A045876(k) % (10^n), k++); k;}

Extensions

a(4) from Giovanni Resta, Sep 27 2016

A276758 Numbers n such that A045876(n) = A045876(n+1).

Original entry on oeis.org

10, 1010, 1100, 1119, 1339, 1519, 3139, 5119, 8899, 27799, 46699, 48499, 50559, 55059, 64699, 72799, 84499, 100110, 101010, 101100, 110010, 110100, 111000, 111229, 112129, 117799, 121129, 136699, 147499, 163699, 168199, 171799, 174499, 177199, 186199
Offset: 1

Views

Author

Altug Alkan, Sep 17 2016

Keywords

Comments

A138147 is a subsequence. Therefore, the sequence is infinite. - David A. Corneth, Sep 17 2016
Suppose a term is of the form SDN, where S is a sequence of digits without leading zeros, D is a digit less than 9 and N is a sequence of digits 9 (possibly 0 nines; terms from A002283) and SDN is a concatenation of S, D and N. Let S' be a permutation of digits of S without leading zeros. Then S'DN is also in the sequence. To search terms one may choose S from A179239. - David A. Corneth, Sep 18 2016
Since (n + 8*k) = (n - k + 1)*(n - k) has solutions that are n = k + 3*sqrt(k) and n = k - 3*sqrt(k), for square values of k there are infinitely many terms such that: 1119, 1111119999, 111111111999999999, ...

Examples

			1339 is a term because A045876(1339) = A045876(1340).
See 2nd comment. As 27799 is in the sequence, we can see S = 27, D = 7 and N = 99. Now all permutations S' (distinct) of S without leading zeros give terms. They are 72, giving term 72799. - _David A. Corneth_, Sep 18 2016
		

Crossrefs

Programs

A276810 Numbers n such that A045876(n) has distinct decimal digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 39, 48, 49, 57, 58, 59, 67, 68, 69, 75, 76, 78, 79, 84, 85, 86, 87, 89, 93, 94, 95, 96, 97, 98, 149, 158, 167, 176, 185, 194, 199, 239, 248, 257, 275, 284, 289, 293, 298, 329, 347, 356, 365, 374, 379, 388, 392, 397, 419, 428, 437, 469, 473, 478, 482
Offset: 1

Views

Author

Altug Alkan, Sep 18 2016

Keywords

Comments

This sequence contains 146 elements. The largest is 991. No more terms below 10^10. As A045876(n) >= n, for all n >= 10^10, A045876(n) will have at least one digit not distinct. - David A. Corneth, Sep 19 2016

Examples

			289 is a term because 289+298+829+892+928+982 = 4218 has distinct decimal digits.
		

Crossrefs

Programs

Extensions

Clarified comment. - Harvey P. Dale, Apr 30 2022

A061147 Product of all distinct numbers formed by permuting digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 252, 403, 574, 765, 976, 1207, 1458, 1729, 40, 252, 22, 736, 1008, 1300, 1612, 1944, 2296, 2668, 90, 403, 736, 33, 1462, 1855, 2268, 2701, 3154, 3627, 160, 574, 1008, 1462, 44, 2430, 2944, 3478, 4032, 4606, 250, 765, 1300
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2001

Keywords

Examples

			a(12) = 12*21 = 252.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Union[FromDigits/@Permutations[IntegerDigits[n]]],{n,60}] (* Harvey P. Dale, Apr 06 2023 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 30 2001
Showing 1-10 of 17 results. Next