cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045939 Numbers m such that the factorizations of m..m+2 have the same number of primes (including multiplicities).

Original entry on oeis.org

33, 85, 93, 121, 141, 170, 201, 213, 217, 244, 284, 301, 393, 428, 434, 445, 506, 602, 603, 604, 633, 637, 697, 841, 921, 962, 1041, 1074, 1083, 1084, 1130, 1137, 1244, 1261, 1274, 1309, 1345, 1401, 1412, 1430, 1434, 1448, 1490, 1532, 1556, 1586, 1604
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers m through m+k have the same number of prime divisors (with multiplicity): A045920 (k=1), this sequence (k=2), A045940 (k=3), A045941 (k=4), A045942 (k=5), A123103 (k=6), A123201 (k=7), A358017 (k=8), A358018 (k=9), A358019 (k=10).
A056809 is a subsequence.
Cf. A006073. - Harvey P. Dale, Apr 19 2011

Programs

  • Mathematica
    f[n_]:=Plus@@Last/@FactorInteger[n];lst={};lst={};Do[If[f[n]==f[n+1]==f[n+2],AppendTo[lst,n]],{n,0,7!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    pd2Q[n_]:=PrimeOmega[n]==PrimeOmega[n+1]==PrimeOmega[n+2]; Select[Range[1700],pd2Q]  (* Harvey P. Dale, Apr 19 2011 *)
    SequencePosition[PrimeOmega[Range[1700]],{x_,x_,x_}][[;;,1]] (* Harvey P. Dale, Mar 08 2023 *)
  • PARI
    is(n)=my(t=bigomega(n)); bigomega(n+1)==t && bigomega(n+2)==t \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    list(lim)=my(v=List(),a=1,b=1,c); forfactored(n=4,lim\1+2,c=bigomega(n); if(a==b&&a==c, listput(v,n[1]-2)); a=b; b=c); Vec(v) \\ Charles R Greathouse IV, May 07 2020