cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A045968 a(1)=5; for n >= 2, if n = Product p_i^e_i, then a(n) = Product p_{i+3}^e_i.

Original entry on oeis.org

5, 7, 11, 49, 13, 77, 17, 343, 121, 91, 19, 539, 23, 119, 143, 2401, 29, 847, 31, 637, 187, 133, 37, 3773, 169, 161, 1331, 833, 41, 1001, 43, 16807, 209, 203, 221, 5929, 47, 217, 253, 4459, 53, 1309, 59, 931, 1573, 259, 61, 26411, 289, 1183, 319, 1127, 67, 9317, 247
Offset: 1

Views

Author

Keywords

Examples

			If n = 9 = 3^2, then a(n) = 11^2 = 121 (since 11 is the third prime after 3).
		

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 3]^e; a[1] = 5; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Extensions

More terms from David W. Wilson
Erroneous linear recurrence deleted by Harvey P. Dale, May 07 2018

A045970 a(1)=7; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+4}^e_i.

Original entry on oeis.org

7, 11, 13, 121, 17, 143, 19, 1331, 169, 187, 23, 1573, 29, 209, 221, 14641, 31, 1859, 37, 2057, 247, 253, 41, 17303, 289, 319, 2197, 2299, 43, 2431, 47, 161051, 299, 341, 323, 20449, 53, 407, 377, 22627, 59, 2717, 61, 2783, 2873, 451, 67, 190333, 361, 3179, 403
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 4]^e; a[1] = 7; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Extensions

More terms from David W. Wilson

A045969 a(1)=6; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^e_i * Product p_{i+2}^e_i.

Original entry on oeis.org

6, 15, 35, 225, 77, 525, 143, 3375, 1225, 1155, 221, 7875, 323, 2145, 2695, 50625, 437, 18375, 667, 17325, 5005, 3315, 899, 118125, 5929, 4845, 42875, 32175, 1147, 40425, 1517, 759375, 7735, 6555, 11011, 275625, 1763, 10005, 11305, 259875, 2021, 75075
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (NextPrime[p] * NextPrime[p, 2])^e; a[1] = 6; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = -5/6 + Product_{k>=2} (1+1/(prime(k)*prime(k+1)-1)) = 0.31383788... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A045971 a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.

Original entry on oeis.org

8, 27, 125, 81, 343, 3375, 1331, 243, 625, 9261, 2197, 10125, 4913, 35937, 42875, 729, 6859, 16875, 12167, 27783, 166375, 59319, 24389, 30375, 2401, 132651, 3125, 107811, 29791, 1157625, 50653, 2187, 274625, 185193, 456533, 50625, 68921, 328509, 614125
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^(e + 2); a[1] = 8; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/5) * A065483 - 7/8 = 0.196827322859... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A045972 a(1)=9; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^{e_i+1}.

Original entry on oeis.org

9, 25, 49, 125, 121, 1225, 169, 625, 343, 3025, 289, 6125, 361, 4225, 5929, 3125, 529, 8575, 841, 15125, 8281, 7225, 961, 30625, 1331, 9025, 2401, 21125, 1369, 148225, 1681, 15625, 14161, 13225, 20449, 42875, 1849, 21025, 17689, 75625, 2209, 207025
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 1); a[1] = 9; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/7) * (zeta(2)*zeta(3)/zeta(6)) - 8/9 = 0.221737646437... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A227324 Result of changing both the prime indices and the exponents in the prime factorization of n: increment odd values, decrement even values.

Original entry on oeis.org

1, 9, 4, 3, 49, 36, 25, 81, 2, 441, 169, 12, 121, 225, 196, 27, 361, 18, 289, 147, 100, 1521, 841, 324, 7, 1089, 16, 75, 529, 1764, 1369, 729, 676, 3249, 1225, 6, 961, 2601, 484, 3969, 1849, 900, 1681, 507, 98, 7569, 2809, 108, 5, 63, 1444, 363, 2209, 144
Offset: 1

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Comments

A self-inverse permutation on the positive integers: a(a(n)) = n.

Examples

			n = 2^3 => a(n) = 3^4 = 81.
n = 3^2 => a(n) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(ithprime(i[1])^i[2], i=map(x->map(y->y-1+2*irem(y, 2),
            [numtheory[pi](x[1]), x[2]]), ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 17 2013
  • Mathematica
    a[n_] := If[n == 1, 1, Product[{p, e} = pe; Prime[BitXor[PrimePi[p] - 1, 1] + 1]^(BitXor[e - 1, 1] + 1), {pe, FactorInteger[n]}]];
    Array[a, 100] (* Jean-François Alcover, May 31 2019, after Andrew Howroyd *)
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); prime( bitxor( primepi(p)-1, 1)+1)^(bitxor(e-1, 1)+1))} \\ Andrew Howroyd, Jul 23 2018
    
  • Python
    primes = [2]*2
    primes[1] = 3
    def addPrime(k):
      for p in primes:
        if k%p==0:  return
        if p*p > k:  break
      primes.append(k)
    for n in range(5, 1000000, 6):
      addPrime(n)
      addPrime(n+2)
    for n in range(1,99):
      p = 1
      j = n
      i = 0
      while j>1:
        e = 0
        while j % primes[i] == 0:
          j /= primes[i]
          e+=1
        if e:
          e = ((e-1)^1) + 1
          p*= primes[i^1]**e
        i += 1
      print(str(p), end=', ')

Formula

Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p-1)*(p^6 + q(p) +(p^3-1)*q(p)^2))/(p^7 - p*q(p)^2) = 0.3120270364..., where q(p) = nextprime(p) = A151800(p) if p has an odd index, and q(p) = prevprime(p) = A151799(p) otherwise. - Amiram Eldar, Sep 17 2023

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018
Showing 1-6 of 6 results.