A045975 Take the first odd integer and multiple of 1, the next 2 even integers and multiples of 2, the next 3 odd integers and multiples of 3, the next 4 even integers and multiples of 4, ...
1, 2, 4, 9, 15, 21, 24, 28, 32, 36, 45, 55, 65, 75, 85, 90, 96, 102, 108, 114, 120, 133, 147, 161, 175, 189, 203, 217, 224, 232, 240, 248, 256, 264, 272, 280, 297, 315, 333, 351, 369, 387, 405, 423, 441, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 561, 583, 605, 627, 649, 671, 693
Offset: 1
Examples
Triangle begins: 1; 2, 4; 9, 15, 21; 24, 28, 32, 36; 45, 55, 65, 75, 85; 90, 96, 102, 108, 114, 120; 133, 147, 161, 175, 189, 203, 217; ...
Links
- Reinhard Zumkeller, Rows n=1..150 of triangle, flattened
Crossrefs
Programs
-
Haskell
a045975 n k = a045975_tabl !! (n-1) !! (k-1) a045975_row n = a045975_tabl !! (n-1) a045975_tabl = f 1 [1..] where f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where ys | even k = take k ms | otherwise = take k $ filter odd ms ms = filter ((== 0) . (`mod` k)) xs -- Reinhard Zumkeller, Jan 18 2012
-
Mathematica
first[n_?EvenQ] := (n - 1)*n^2/2; first[n_?OddQ] := n*(n^2 - 2n + 3)/2; row[n_] := (ro = {first[n]}; next = first[n] + n; While[ Length[ro] < n, If[Mod[next , 2] == Mod[n, 2], AppendTo[ro, next]]; next = next + n]; ro); Flatten[ Table[row[n], {n, 1, 11}]](* Jean-François Alcover, Jun 08 2012 *)
Extensions
More terms from James Sellers
Keyword tabl added by Reinhard Zumkeller, Jan 18 2012
Comments