A045979 Bernoulli number B_{2n} has denominator 6.
1, 7, 13, 17, 19, 31, 37, 43, 47, 49, 59, 61, 67, 71, 73, 79, 91, 97, 101, 103, 107, 109, 127, 133, 137, 139, 149, 151, 157, 163, 167, 169, 181, 193, 197, 199, 211, 217, 223, 227, 229, 241, 247, 257, 259, 263, 269, 271, 277, 283, 289
Offset: 1
References
- B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 76.
Links
Programs
-
Magma
[n: n in [0..400] | Denominator(Bernoulli(2*n)) eq 6]; // Vincenzo Librandi, Feb 06 2016
-
Mathematica
ok[n_] := IntegerQ[(n^2 - 1)*BernoulliB[2n]]; Select[Range[300], ok] (* Jean-François Alcover, Jun 27 2012, after Benoit Cloitre *) result = {}; Do[count = 0; Do[If[Not[PrimeQ[2*Divisors[n][[i]] + 1]], count++], {i, 2, DivisorSigma[0, n]}]; If[count == DivisorSigma[0, n] - 1, AppendTo[result, n]], {n, 1, 10000}]; result (* Richard R. Forberg, Aug 06 2016 *) Position[BernoulliB[2 Range[300]],?(Denominator[#]==6&)]//Flatten (* _Harvey P. Dale, Jan 28 2017 *)
-
PARI
isok(n) = denominator(bernfrac(2*n)) == 6; \\ Michel Marcus, Feb 06 2016
Formula
a(n) seems to be asymptotic to c*n, 5 < c < 6. - Benoit Cloitre, Oct 19 2002
Comments