A046008 Discriminants of imaginary quadratic fields with class number 11 (negated).
167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027, 2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931, 4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443, 9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683, 15667
Offset: 1
Links
- Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998) 295-330.
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
- Keith Matthews, Tables of imaginary quadratic fields with small class numbers
- C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Reap[ For[n = 1, n < 15000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 11, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
-
PARI
ok(n)={isfundamental(-n) && quadclassunit(-n).no == 11}; for(n=1, 16000, if(ok(n)==1, print1(n, ", "))) \\ G. C. Greubel, Mar 01 2019
-
Sage
[n for n in (1..16000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==11] # G. C. Greubel, Mar 01 2019
Extensions
a(40)-a(41) from Giovanni Resta, Mar 20 2013