cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002377 Least number of 4th powers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 1, 2, 3
Offset: 1

Views

Author

Keywords

Comments

No terms are greater than 19, see A002804. - Charles R Greathouse IV, Aug 01 2013
Seven values of n need the maximum of 19 fourth powers. These form the arithmetic progression {79, 159, 239, 319, 399, 479, 559} each term being congruent to 79 mod 80. For n < 625 the available fourth powers are congruent to 1 or 16 mod 80, requiring 4*16 + 15*1 to sum to 79. However, 625 = 5^4 is congruent to 65 and 1*65 + 14*1 = 79. So for n > 625 and congruent to 79, only 15 fourth powers are needed to satisfy the mod 80 arithmetic. - Peter Munn, Apr 12 2017

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Cnt4[n_] := Module[{k = 1}, While[Length[PowersRepresentations[n, k, 4]] == 0, k++]; k]; Array[Cnt4, 100] (* T. D. Noe, Apr 01 2011 *)
    seq[n_] := Module[{v = Table[0, {n}], s, p}, s = Sum[x^(k^4), {k, 1, n^(1/4)}] + O[x]^(n+1); p=1; For[k=1, k <= 19, k++, p *= s; For[i=1, i <= n, i++, If[v[[i]]==0 && Coefficient[p, x, i] != 0, v[[i]] = k]]]; v];
    seq[100] (* Jean-François Alcover, Sep 28 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), s=sum(k=1, sqrtint(sqrtint(n)), x^(k^4)) + O(x*x^n), p=1); for(k=1, 19, p*=s; for(i=1, n, if(!v[i] && polcoeff(p,i), v[i]=k))); v} \\ Andrew Howroyd, Jul 06 2018
    
  • Python
    from itertools import count
    from sympy.solvers.diophantine.diophantine import power_representation
    def A002377(n):
        if n == 1: return 1
        for k in count(1):
            try:
                next(power_representation(n,4,k))
            except:
                continue
            return k # Chai Wah Wu, Jun 25 2024

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A186684 Total number of positive integers below 10^n requiring 19 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + A186677(n) + A186680(n) + A186682(n) + a(n) = A002283(n).

References

  • J.-M. Deshouillers, K. Kawada, and T. D. Wooley, On sums of sixteen biquadrates, Mem. Soc. Math. Fr. 100 (2005), p. 120.

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1}, 100, 7] (* Paolo Xausa, Jul 30 2024 *)

Formula

a(n) = 7 for n >= 3. - Nathaniel Johnston, May 09 2011
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: x^2*(1 + 6*x)/(1 - x).
E.g.f.: 7*(exp(x) - 1 - x) - 3*x^2. (End)

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
Terms after a(6) from Nathaniel Johnston, May 09 2011

A186685 Total number of n-digit numbers requiring 19 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 6}, 100] (* Paolo Xausa, Jul 26 2024 *)

Formula

a(n) = A186684(n) - A186684(n-1).
A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + a(n) = A052268(n).
a(n) = 0 for n >= 4. - Nathaniel Johnston, May 09 2011

A085304 Least number of 4th powers required to represent n!.

Original entry on oeis.org

1, 1, 2, 6, 9, 10, 15, 15, 9, 10, 15, 6, 12, 12
Offset: 0

Views

Author

Labos Elemer, Jun 30 2003

Keywords

Examples

			n=6: 6!=720=625+81+14,length-of-solution=16>=a(6)
but 6!=720=2.256+13.16 seems shortest solution a(6)=15
after, see also A046046
n=7: 7!=5040=3.1296+4.256+8.16 so a(7)<=15 (uncertain);
n=8: a(8)<=9 because 8!=4.10000+1.256+4.16.
		

Crossrefs

Formula

"Shortest" solutions to n!=Sum[x(j)^4], j=1, .., m[n] with minimal value of m[n]: a(n)=Min{m[n]}. Per analogiam A084355.

Extensions

a(7)-a(11) from John W. Layman, Aug 13 2004
a(12) from Sean A. Irvine, Feb 11 2010
a(13) from Sean A. Irvine, Feb 15 2010
Showing 1-4 of 4 results.