A046099 Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.
8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 120, 125, 128, 135, 136, 144, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 288, 296, 297, 304, 312, 320, 324, 328, 336
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Cubefree.
Crossrefs
Programs
-
Haskell
a046099 n = a046099_list !! (n-1) a046099_list = filter ((== 1) . a212793) [1..] -- Reinhard Zumkeller, May 27 2012
-
Maple
isA046099 := proc(n) local p; for p in ifactors(n)[2] do if op(2,p) >= 3 then return true; end if; end do: false ; end proc: for n from 1 do if isA046099(n) then printf("%d\n",n) ; end if; end do: # R. J. Mathar, Dec 08 2015
-
Mathematica
lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>2, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 15 2008 *)
-
PARI
is(n)=n>7 && vecmax(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
-
Python
from sympy.ntheory.factor_ import core def ok(n): return core(n, 3) != n print(list(filter(ok, range(1, 337)))) # Michael S. Branicky, Aug 16 2021
-
Python
from sympy import mobius, integer_nthroot def A046099(n): def f(x): return n+sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
Formula
A212793(a(n)) = 0. - Reinhard Zumkeller, May 27 2012
Sum_{n>=1} 1/a(n)^s = (zeta(s)*(zeta(3*s)-1))/zeta(3*s). - Amiram Eldar, Dec 27 2022
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008
Edited by N. J. A. Sloane, Jul 27 2009
Comments