A046100 Biquadratefree numbers: numbers that are not divisible by any 4th power greater than 1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
- Eric Weisstein's World of Mathematics, Biquadratefree.
Crossrefs
Programs
-
Haskell
a046100 n = a046100_list !! (n-1) a046100_list = filter ((< 4) . a051903) [1..] -- Reinhard Zumkeller, Sep 03 2015
-
Maple
A046100 := proc(n) option remember; local a,p,is4free; if n = 1 then return 1; else for a from procname(n-1)+1 do is4free := true ; for p in ifactors(a)[2] do if op(2,p) >= 4 then is4free := false; break; end if; end do: if is4free then return a; end if; end do: end if; end proc: # R. J. Mathar, Aug 08 2012
-
Mathematica
lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>4, a=1], {n, Length[FactorInteger[m]]}];If[a!=1, AppendTo[lst, m]], {m, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *) Select[Range[100],Max[FactorInteger[#][[;;,2]]]<4&] (* Harvey P. Dale, Jul 13 2023 *)
-
PARI
is(n)=n==1 || vecmax(factor(n)[,2])<4 \\ Charles R Greathouse IV, Jun 16 2012
-
Python
from sympy import mobius, integer_nthroot def A046100(n): def f(x): return n+x-sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
-
Sage
def is_biquadratefree(n): return all(c[1] < 4 for c in n.factor()) def A046100_list(n): return [i for i in (1..n) if is_biquadratefree(i)] A046100_list(76) # Peter Luschny, Aug 08 2012
Formula
A051903(a(n)) < 4. - Reinhard Zumkeller, Sep 03 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(4*s), for s > 1. - Amiram Eldar, Dec 27 2022
Extensions
Name edited by Amiram Eldar, Jul 29 2024
Comments